—T—————\; .
AD-A267 114 = |
R @)

ARL-TR-14

&‘ g
%AUSTR ALIA &

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORY

MELBOURNE, VICTORIA

Technical Report 14

A SOFTWARE INTERFACE FOR THE
ARL WIND TUNNEL DATA ACQUISITION SYSTEM

| "
B.D. FAIRLIE Qllg 2

B

U
'.\@%(\\ - \1’”?:& 3.4‘3/
W mﬂd‘ - Approved for public release.

© COMMONWEALTH OF AUSTRALIA 1993
MARCH 1992

- 0 A,,s"’d) a2-16621

1

This work is copyright. Apart from any fair dealing for the purpose of
study, research, criticism or review, as permitted under the Copyright Act,
no part may be reproduced by any process without written permission.
Copyright is the responsibility of the Director Publishing and Marketing,
AGPS. Enquiries should be directed to the Manager, AGPS Press,

Australian Government Publishing Service, GPO Box 84, CANBERRA ACT
2601.

g D L L LRIV N

THE UNITED STATES NATIONAL

TECHNICAL INFORMATION SEAVICE
IS AUTHORISED TO -'
HEPRODUL .. AND SELL THIS REPORT -

oy, e L

AR-007-135

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORY

Technical Report 14

A SOFTWARE INTERFACE FOR THE
ARL WIND TUNNEL DATA ACQUISTION SYSTEM

by

B.D. FAIRLIE
S.S.W.LAM

SUMMARY

A software interface for the data acquisition system has been developed on a MicroVAX II
computer for the Transonic and Low Speed wind tunnels at ARL. The software is responsible
for handling instrumentation control and data transfer requests between the data acquisition
software and the parallel data bus via a DRV11 parallel 1/0 interface adapter. Access to the
DRVI11 registers is effected by direct mapping of the Q22-Bus I/O page to program
variables, giving fast and efficient transfer of data to and from the parallel data bus. Up 1o
five processes may access the parallel data bus at one time via this software interface thus
allowing great flexibility in the development of data acquisition software. This report details
the necessary programming steps which must be included in data acquisition software to
access the parallel data bus via the software interface.

DSTO 44

AUSTRALIA

© COMMONWEALTH OF AUSTRALIA 1993

POSTAL ADDRESS: Director, Aeronautical Research Laboratory,
506 Lorimer Street, Fishermens Bend, 3207
Victoria, Australia.

CONTENTS
INTRODUCTION
THE HARDWARE INTERFACE

A DRV11 “DEVICE DRIVER”

3.1 Mapping The Input/Qutput Page
3.2 Connecting ToInterrupts
3.3 Subroutine DRINITn..

SOFTWARE 1/0 INTERFACE PROCESS — DIGIO
4.1 Requirements Of The I/O Interface Process
42 TheDIGIOMailboxttt ittt e
4.3 The DIGIO Mailbox Message v vt v v v v ..
4.4 The DIGIO Global CommonBlock
44.1 BusModuleUsageTables
4.4.2 Data Arrays And UsageIndicators
4.4.3 Display Process ActivityIndicator
4.4.4 Linking To The Global CommonBlock
4.5 Module Addresses e
4.6 Data Transfer Complete/Error Notification
4.7 Master Reset0t iiienmeteeseennas

SUMMARY OF REQUIREMENTS FOR A PROCESS COMMU-
NICATING WITH THE BUS VIA DIGIO

5.1 Definition Of Variables
5.2 Commecting ToDIGIO0 i e
5.3 Transferring Data ViaDIGIO
54 TreatingErrorsttt nnnnns
5.5 Disconnecting From DIGIO

CONCLUSIONS

REFERENCES

APPENDIX

A

MODIFICATIONS TO THE DRV11 CIRCUIT BOARD

20
20
22
23
26
27

27

30

B LISTING OF THE INCLUDE FILE DIGIO_INCLUDE.FOR 31
C LISTING OF THE INCLUDE FILE DIGIO DEFS.FOR 32
D LISTING OF THE SUBROUTINE DR_INIT.FOR 33

E LIST OF BUS ADDRESSES IN LOW SPEED WIND TUNNEL 36

F LIST OF BUS ADDRESSES IN VARIABLE PRESSURE TRAN-
SONIC WIND TUNNEL 41

DISTRIBUTION LIST
DOCUMENT CONTROL DATA

' FAocession Yor

 NTIS GRA&IL &
{ DTIC 7AB a .
Uue s cunced D ’
Ju- ot rutde
DTIC o, Liaent LY 2hitary v 3D i [o
| By
Distribution/
J‘—Avnllabilitv Codns
. |ivall anclor
‘Dist tpscial

Y I
(‘n

'
E
[

1 INTRODUCTION

The use of computers for data acquisition and analysis in wind tunnels at the Aero-
nautical Research Laboratory (ARL) began in the early 1960s. The early Transonic
Wind Tunnel (VPT) instrumentation was built around a Digital Equipment Corpora-
tion (DEC!) PDP1-8/1 computer and automated much of the testing procedure and
data analysis. This system was in operation from 1967 until the late 1980s by which
time the PDP-8/1 computer had well and truly reached the end of its life. It was then
replaced by a DEC MicroVAX'II micro-computer. Much of the instrumentation that
was built around the PDP-8/1 was also replaced.

In the Subsonic Wind Tunnel (LSWT), up until the 1960s analysis of data was carried
out in an off-line batch operation on an external computer. In the early 1970s the first
on-line data acquisition system was installed, which collected data from selected data
sources in a pre-arranged sequence. The data was subsequently analysed off-line on
the central site computer. Later, a serial line connecting the system to the central site
computer allowed data to be processed in “real-time” and the results of the test dis-
played on a ternunal screen almost immediately after the data had been collected. In
1982, a dedicated DEC PDP-11/44 mini-computer was installed for the sole purpose
of wind tunnel data acquisition and processing, and tunnel control. Comprehensive
software has been written and developed over the years to take advantage of the com-
puting power available on this dedicated system. Up until the late 1980s data were,
however, still being collected via a relatively slow and cumbersome “serializer” which
had become outdated and unreliable.

To maintain the productivity and quality of the work that has been carried out in
these wind tunnels, a new data acquisition system based on microprocessor technology
was designed at ARL and installed in both tunnels. The new system comprises of
several microprocessor based instrumentation modules (slave modules) connected toa
dedicated master (host) computer via a bi-directional differential parallel data bus also
developed at ARL [1]. Reference [1] describes this system and reasons for selecting
a master slave system with the intelligence distributed across the bus. This report
describes the software that provides an interface between the parallel data bus and
the data acquisition programs which run on the master computer. The software is
written in VAX!FORTRAN but the ideas and logic could readily be adopted to other
high level computer languages.

2 THE HARDWARE INTERFACE

Communication between the MicroVAX I computer and the tunnel instrumentation
modules is provided by a bi-directional differential parallel (BDP) bus system with
appropriate interfaces as shown in Figure 1. The BDP data bus is a 16-bit wide bus
that provides input, output, control and addressing functions. It operates in a mas-
ter/slave format in which the master initiates all traffic on the address bus. It allows
input and output to be sent to or received from any individual tunnel instrumenta-
tion module (slave), in any order, with the timing controlled by the MicroVAX II
computer (master). The slave modules cannot address the master, which eliminates
the possibility of bus hang-ups caused by two or more modules activating the bus
simultaneously. However, the slaves can signal the master, requesting its attention

!DEC, PDP, MicroVAX and VAX are registered trademarks of Digitsl Equipment Corporation

r——_——‘“_¥

via a common error/flag line. The master’s attention is requested to warn of an error,
such as invalid data, to indicate that daia gathering has been completed or that a
control function setting has been finalized.

The parallel input/output interface between the Q22-Bus? of the MicroVAX II com-
puter and the wind tunnel data bus is provided by a DEC DRV11 General Device
Interface Adapter. There are several variants of the DRV11 Adapter available on the
MicroVAX II computer. The one used here is the Q22-Bus equivalent of the UNIBUS?2
DR11-C interface adapter, designated as DEC module number M7941. There is, how-
ever, a design fault in the circuit board and modifications must be made, which are
detailed in Appendix A. The DRV11 is a general-purpose digital interface which
provides 16 input and 16 output lines (for handling 16-bit parallel data), and 8 con-
trol lines (for transferring control and status information) to tranmsistor-transistor
logic (TTL) compatible external devices. These input/output and control lines are
converted to a bi-directional differential parallel bus via a single self-contained card
interface — the DRV11 Bus Interface card, also developed at ARL [1]. Through this
hardware arrangement the MicroVAX 1I computer can communicate with the slave
modules at a rate greater than 1800 16-bit data words per second [1].

3 A DRV11 “DEVICE DRIVER”

An interface adapter attached to the Q22-Bus of a MicroVAX II is usually accessed
from a computer program via a device driver that is part of the VMS? operating
system. However, the DRV11 is not supported by VMS, and hence a device driver is
not available. A different approach must therefore be employed to effect the transfer
of data and controls from user written programs to the DRV11 interface adapter.

The DRV11 has three registers for control and data transfer [2]:

e the control and status register (CSR)
¢ the output buffer

e the input buffer.

These registers may be accessed from within a computer program by mapping the
MicroVAX Q22-Bus input/output (I/0) page?, which contains the addresses of the
device registers above, to variables appropriately defined in the program. Values as-
signed to these variables are written directly into the respective registers and data
received by the input buffer may be read directly from the variable mapped to it. This
technique of accessing the registers of a device directly is very efficient [3], because it
by-passes the VMS operating system’s optimization and resource management pro-
cesses. However, the technique is also dangerous if not used correctly, as it also
by-passes the normal checking and protection procedures of the operating system.

The two interrupt vectors of the DRV11 interface may be connected to a process*
by a simple device handler, CONINTERR, through the VMS SYSGEN facility [4]. The

2Q23-Bus, UNIBUS and VMS are registered trademarks of Digital Equipment Corporation

3A page is a set of 512 contiguous byte locations used as the unit of memory mapping and
protection.

4VMS refers to any tesk under the control of the operating system, including any routines that
may be executed as part of the running a scheduled job as a process.

.
oA i 3 A i K o S s o At

parallel data bus uses one interrupt to indicate to the master that data are ready,
and the other to notify the master of any error detected in the instrumentation.

3.1 Mapping The Input/Output Page

To gain access to the I/O page (or for any page of physical memory) a process must
map the page into its virtual address space. In the present case, the page of interest is
that containing the DRV11 registers. The VMS operating system provides a system
service routine SYS$CRMPSC (create and map section) to perform the mapping of I/O
space to a process’s memory. This routine is called as follows:

status = SYS$CRMPSC([inadrl, [retads], [acmode], [flags], [gsnam],
1 [ident], [relpagl, [chan], [pagecnt], [vbn]l, [prot], [pfcl)

where status is an INTEGER#4 variable returned by the routine to indicate the status
of the operation. According to the convention used in the MicroVMS Programmer’s
Manual [5], items enclosed in square brackets are optional. The parameters relpag,
chan and pfc are not relevant to mapping the I/O space and can be left blank. The
other arguments have the following meaning:

inadr — An array of two longwords® containing the addresses of the beginning and
end of the region in virtual memory to which the I/O page is to be mapped.
Thus, to map a single page of I/0 space to an array variable, iopage, the
following code fragment may be used.

INTEGER*2 iopage(0:255)
INTEGER*4 inadr(2)

inadr(1)
inadr(2)

%LoC (iopage(0))
%LOC (iopage(255)) + 1

[/}

The variable iopage to which the I/O page will be mapped is 256 words long
since there are 512 bytes in each page. inadr(1) is the address of the beginning
of the region and inadr(2) is set to the address of iopage(255) plus one, so
that it contains the last byte of the region.

retadr — An array of two longwords which on return from the routine SYS$CRMSPC
will contain the addresses of the beginning and the end of the region of virtual
memory that the I/O page was actually mapped to. Note that if retadr(1) #
inadr(1) or retadr(2) # inadr(2), then an error has occurred, usually due
to mis-specification of one or more parameters. If the mapping has not been
done at all, both values in retadr are returned as ~1.

acmode — This parameter specifies the access mode to be applied to the mapped
region. It is optional and is omitted in the present case. The access mode then
defanlts to that of the calling process.

flags — A longword containing a mask which determines the characteristics of the
mapped section. When mapping the I/O page, £1ags should be set up with the
following code fragment

S A longword is a data unit corresponding to 4 bytes of memory, usually declared as an INTEGER+4
variable in VAX FORTRAN.

INCLUDE ° ($SECDEF)’
flags = SEC$M_PFNMAP .OR. SEC$M_WRT

The first statement includes the system definition library module containing the
definitions of the bit offsets used in the statement following to set the variable
flags. SEC$M_PFNMAP indicates that the mapping should be done via page frame
number € (see the description of vbn below). This is to ensure that the variables
declared in a FORTRAN program are mapped correctly to the registers. The
SEC$M_WRT mask bit is to allow the mapped section to have read and write
access.

gsdnam — This is the global section name and is required only if the section is to be
accessed globally. It is not used in the present case and is left blank.

ident — An argument containing match information for global sections. It only
applies to global sections.

pagecnt — A longword containing the number of pages to be mapped. It is equal to
1 in the present case.

vbn — A long word containing the page frame number (PFN) of the memory where the
mapped section begins. The PFN of any physical page in memory is contained
in Lits 9 through 29 of its physical address. The following paragraph shows how
the PFN of the I/O page containing the addresses of the DRV11 registers may
be obtained.

The address of the control and status register (CSR) of the DRV11 interface
on the Q22-Bus I/O space is given as 7676005 (3EF80,¢){4]. The first (least
significant) 12 bits of this address, 76005 (F'80,6), give the offset address in
the Q22-Bus I/O space. This address must be added to the physical address
at the beginning of the Q22-Bus I/O space, which is given on page H-3 of
Reference [6] as 20000000,¢, to obtain the physical address of the DRV11 CSR,
i.e. 20000F80,5. Of this physical address, bits 9 to 23 are the PFN and bits 0 to
8 are the byte offset within the page.

200C0T'80;¢ = 10 2906 0000 0000 0000 1111 1000 0000,

PFN Byte offset
= 100007;¢ = 180;6

Therefore, the PFN of the mapped I/0 page is 100007;¢, and the byte offset of
the DRV11 CSR is 180,.

prot — A longword indicating the protection mask for the mapped section. This
argument may be omitted and defaults to read and write access for all users.

Once the I/O page containing the CSR of the DRV11 interface has been mapped,
access to its CSR and input and output buffers may be made via the addresses in
the process’s virtual memory corresponding to these register’s offsets relative to the
beginning of the mapped page. From the description of vbn previously, the byte offset
of the DRV11 CSR is 180;5 = 394;0. The word (2 bytes) offset is then 394/2 = 192.

SPage frame number is the address of the first byte of s page in physical memory.

= Pk o A A . Attt

Hence the CSR may be accessed via iopage(192), and the output and input buffers
become jopage(193) and iopage(194) respectively.

Note that the input buffer and the high byte of the CSR of the DRV11 are read
only. For some reason, the VMS system insists that the input buffer, iopage(194),
be equated to a temporary variable before being output. Otherwise a hardware error
(presumably attempting to write to a read-only address) occurs.

3.2 Connecting To Interrupts

Connecting a process to an interrupt vector allows the process to receive notification of
interrupts from some hardware device. The notification may be via any combination
of the following:—

e executing a user-supplied interrupt-service routine,
e setting an event flag in the calling process, or

¢ executing an Asynchronous System Trap (AST) service routine that gains con-
trol following the interrupt.

Before using the connect-to-interrupt system service, the hardware device must be
configured using the SYSGEN CONNECT command of the VMS operating system. The
following dialogue shows the procedure to configure the DRV11 as device OAAQ (OA
is the standard VMS device name for the DR11C interface and VMS recognizes the
present variant of DRV11 adapter only as a DR11C):—

$ SET DEFAULT SYS$SYSTEM

$ RUN SYSGEN

SYSGEN> CONNECT OAAO /ADAPTER=0 /CSR=%0767600 /VECTOR=%0300 -
/DRIVER=CONINTERR

SYSGEN> EXIT

$

The components of this command have the following meaning:—

e /ADAPTER=0 — has no significance on the MicroVAX, but must be included to
conform to the syntax of the command.

e /CSR=%0767600 — specifies the Q22-Bus address of the DRV11 CSR.

o /VECTOR=%0300 — specifies the iuterrupt vector table address of interrupt ‘A’
on the DRV11 adapter.

¢ /DRIVER=CONINTERR — connects the DRV11 to a skeletal interrupt driver.

Note that all addresses (CSR and vector) are preceeded by %0 to indicate that they
are octal numbers. This SYSGEN CONNECT command must be executed every time the
MicroVAX system is booted.

The previous command connects only one of the two interrupts of DRV11 to the
CONINTERR driver. To connect the other one, the following command must also be
executed in SYSGEN.

PP,

SYSGEN> CONNECT 04BO /ADAPTE#=0 /CSR=Y0767600 /VECTOR=%0304 -
/DRIVER=CONINTERR

where 3043 is the interrupt vector table address associated with DRV 11 interrupt ‘B’.

Note th.:. we have effectively defined two devices — OAA0: and OABO: — both
acce -ug the same physical device registers, but responding to different interrupts.
' ~errupt ‘A’ is used by the parallel data bus to notify the MicroVAX of completion of
a data transfer. Interrupt ‘B’ is used to warn the MicroVAX of some error conditions.

At run time, a process wishing to be notified of interrupts generated by the DRV11
must first assign the DRV11 devices to associate a VMS channel with each device.
This may be done via a system service call such as:—

status = SYS$ASSIGN (‘_0AA0:’, chan, ,)

where chan (declared as an INTEGER*2 variable) will contain the value, returned by the
function call, of the channel associated with the DRV11 device OAAOQ:. Both QAAO:
and OABO: should be assigned even if both interrupts are not to be used. Assigning
a device prevents other processes from accessing it, and hence avoids problems with
other processes altering the contents of the DRV11 registers.

The process can now be connected to the device interrupt via a call to the system
service SYS$QID in the following format:—

status = SYS$QID ([efn], [chan], [func], (iosb], [astadr],
1 fastprm], (p1], (p2l, [p31. [p4l), [p51. [p6])

Two calls to SYS$QI0, one for each interrupt (device) are required. All parameters
except the p’s have standard SYS$QI0 meanings (see, for example, the chapter on
QIO System Service in Reference [7]). The following are of specific interest:—

chan — The channel number obtained from a previous call to the SYS$ASSIGN rou-
tine.

func — A word containing the I/O function code — when connecting to an interrupt,
this code may be either I0$_CONINTREAD or I0$_CONINTWRITE. The definitions
of these function codes are contained in the system definition library module
$I0DEF which is included in the program source in the following manner:

INCLUDE ’($IODEF)’
or the codes may be declared as EXTERNAL by:
EXTERNAL I0$_COINTWRITE, I0$_COINTREAD

p1 — A longword containing the address of a descriptor for a buffer containing code
and/or data. It is not used in the present case.

p2 — A longword containing the address of an entry point list which is not used in
the present case.

p3 — A longword containing flags, and event flag number specification. The flags
are used to describe options for connect-to-interrupt facility, and are contained
in the low-order word. The high-order word contains an event flag number to
be set when an interrupt occurs. The relevant flags required in the present case
are:——

CIN$M_EFN (value 1) indicates that an event flag is to be set on interrupt.

CIN$M_REPEAT (value 4) indicates that the process should be left connected to
the interrupt vector until the connect is cancelled — usually by the process
exiting.

The values of CIN$M_. .. are obtained from the macro expansion of the module
$CINDEF which is contained in the VMS system macro library LIB.MLB in the
SYSS$LIBRARY: directory.

The only reliable way to set up this long word is to set up a FORTRAN
record which maps the union of two words (INTEGER*2) with a single longword
(INTEGER*4) as follows

STRUCTURE
UNION
MAP
INTEGER * 2 switches
INTEGER * 2 efnum
END MAP
MAP
INTEGER * 4 fiagword
END MAP
END UNION
END STRUCTURE

A variable of the above record type may then be created for each interrupt, for
example, as:

RECORD /flag/ dra_flags, drb_flags
The variable ‘switches’ is initialized with the statements

CINSM_EFN .OR. CINSM_REPEAT
CIN$M_EFN .OR. CINSM_REPEAT

dra_flags.switches
drb_flags.switches

and the event flag numbers, say 1 and 2, are specified as

dra_flags.efnum
drb_flags.efnum

i ! for event flag #1
2 ! for event flag #2

p4 — The name of an AST routine (which must be declared as EXTERNAL) to be
called as the result of an interrupt.

p6 — An AST parameter to be passed to the AST routine when an interrupt occurs.

p6 — The number of AST control blocks to be pre-allocated. This is not required in
the present case.

Fin: lly, to allow the interrupt signal to be received by the user program, the interrupt
enable bits (INT ENB A and INT ENB R, see Figure 2) in the CSR of the LRV11
interface adapter must be set to 1. This may be achieved with the statements

iopage(dr_csr)
iopage(dr_csr)

IBSET (iopage(dr_csr), v_intenba)
IBSET (iopage(dr_csr), v_intenbb)

The index dr_csr refers to the location of DRV11 CSR in the mapped variable array
iopage. The bit positions of INT ENB A and INT ENB B in the CSR are v_intenba
and v_intenbb respectively. They are pre-defined via the declarations

INTEGER*2 dr_csr
INTEGER*2 v_intenbb, v_intenba
PARAMETER (dr_csr = 192, v_intenbb = 5, v_intenba = 6)

Thus, if the REQ A bit is asserted while INT ENB A is set in the DRV11 CSR, event
flag number 1 will be raised (set). If the REQ B bit is asserted while INT ENB B is
set, event flag number 2 will be raised.

3.3 Subroutiie DR INIT

The above procedures for setting up the interface between a process and the DRV11
at run time have been combined into a single routine DR_INIT. This routine (see
Aprendix D) does the following:—

1. Maps the Q22-bus I/O page containing the DRV11 registers to an array iopage
in the process’s virtual address space.

2. Assigns both “devices” and obtains their channel numbers.

3. Connects to hoth DRV11 device interrupts. Event flag number 1 is associated
with the DRV11 interrupt A, and event { ag number 2 is associated with DRV11
interrupt B.

The 1/0O page is mapped to an array iopage defined as:—

INTEGER#2 iopage(0:255)
COMMON /dr_common/iopage

This array, and hence the common block in which it is contained, must be page
aligned. This may be done by including an option file dr_link.opt with any LINK (8]
command (qualified with the LINK switch /0PT) which incorporates dr_init. The
option file contains the line:

PSECT_ATIR = dr_commnon, page

o rm s i e (S 4 T 8 P S ot et

4 SOFTWARE 1I/0 INTERFACE PROCESS — DIGIO

4.1 Requirements Of The I/0O Interface Process

Requests for data transfers to or from the parallel bus may arise under many differ-
ent circumstances, and may occur as the result of the operation of many different
processes. As the data acquisition software is currently set up, any of the following
processes could require such transfers:—

1. COM??? (the many variants of compute sub-processes) will need to transfer in-
formation to the bus during real-time operations (e.g. set point Mach number,
Reynolds number length scales etc.) and will obtain raw data from devices
connected to the data bus via transfers from the bus.

2. MON??? (the many variants of monitor sub-processes) will need to acquire data
from whatever module is being monitored. The frequency with which MON???
processes request such data will depend on what type of operation is being
monitored (e.g. when monitoring the current state of health of a strain gauge
balance more frequent requests will be made as the balance and/or model max-
imum loads are approached).

3. TST??? (variants of a general process used to test individual modules) will need
to obtain data from the particular module under test as well as to write data
to that module.

To coordinate the use of the DRV11 interface between the parallel bus and the Mi-
croVAX, all input and output of data to or from the parallel data bus is carried out
by a single process — DIGIO. This process will be run (detached) from the system
startup file as:—

$ RUN /PROCESS=DIGIO /ERROR=DIGIO.ERR /UIC=[200,0] /DETACH -
$DISK1: [DATAIN.EXE]DIGIO.EXE

and hence will be up and running whenever the MicroVAX is operational. The
qualifier /ERROR=DIGIO.ERR directs any run-time error messages resulting from the
execution of DIGIO to the file DIGIO.ERR. The /UIC=[200,0] qualifier assigns the
DIGIO process a user identification code having a group number of 200, which is
common to all users on the MicroVAX system, except the system manager and a few
special accounts. This is to ensure that DIGIO can communicate with other processes
run by other users (see section 4.6). $DISK1:[DATAIN.EXE] is the directory where
DIGIO.EXE is located.

Consideration of the many possible processes requiring service from DIGIO shows
that requests for data transfers from some processes need to be satisfied more quickly
than others. For example, requests for the real-time COM??? processes must be dealt
with immediately, to guarantee that raw data are gathered at the desired moment in
time, or while the tunnel conditions remain as required. On the other hand, it matters
little if the data requested by MON???, for example, are not available immediately. In
fact, it is desirable that requests already in progress from processes such as MON???
be aborted in favour of a request from COM???. This suggests a multi-level priority
system in which a low priority request already in progress makes way for a higher

L en e e

priority request, and that low priority requests queued for DIGIO be passed over in
favour of requests of higher priority. Most, if not all the features of an ideal system
can be realized with a two-level — high and low — priority system.

Implicit in the above discussion is the provision of some sort of queueing system for
requests to DIGIO. Requests queued to DIGIO would need to include the following
information:—

1. The priority of the request.
2. The number of data transfers required to complete this request.

3. A list of addresses on the digital data bus to, or from, which data are to be
transferred.

4. The location where data to be transferred are to be stored or found.

Communication between DIGIO and processes requesting data transfers will also need
to include some mechanism for the notification of errors. In general, errors will be of
one of three general types:—

1. A serious error may be signalled by the parallel data bus, indicating some sort
of fault condition, either on the bus or in the interface, from which recovery is
not possible.

2. The parallel data bus may signal the occurrence of a recoverable (non-fatal) er-
ror, for example a strain-gauge amplifier overloading. Operations may continue
following such errors but data from that particular module on the bus may be
invalid.

3. A low-priority request may either be aborted or ignored in favour of a higher
priority request. In either case, the data or action expected by the requesting
process will be invalid, and the process must be notified so that it may take the
appropriate action (in many cases this will simply be to requeue the request).

The operation of DIGIO thus requires effective communication and synchronization
with other processes wanting to access the DRV11 interface, or for that matter,
the data bus. This has been achieved by making use of the following programming
techniques provided by VMS and VAX FORTRAN:—

1. Mailboxes:— These are channels provided by VMS for interprocess communi-
cations (see section 3.4.2 of Reference 5). Messages are passed into mailboxes
in the form of character strings. They are queued within the mailbox and are
read by the destination process sequentially.

2. Installed Common Blocks:— A common block defined in a FORTRAN pro-
gram unit may be installed in the system memory as a shareable image. A
program wanting access to this common block, as well as defining and declaring
it within the program unit, must also be linked to this image (see section 4.4.4
or page 3-46 of Reference 5).

3. Common Event Flags:— Event flags are used to signal either the status
(success or failure) of an operation, or the occurrence of a particular event.

10

- TR,

L s

—r——_—-t

They may be waited for when one operation must be completed before the next

one can continue, or they may be checked to see if they have been set as an
indication of a status or condition.

4.2 The DIGIO Mailbox

The primary means of communication between DIGIO and other processes is a quene
containing messages requesting DIGIO to carry out data transfers. This queue is
realized as a VMS mailbox called digio_mbox. DIGIO creates this mailbox during
its initialization phase via the statement

status = sys$crembx (%VAL(1),

i %VAL (mbox_chan),

2 AVAL(256),

3 %VAL(1024), , ,

4 'digio_mbox’)
where

e %VAL(1) — indicates that the mailbox is permanent. This ensures that the
mailbox logical name is entered into the system logical name table (rather than
the process logical name table) making it available to all other processes.

e mbox_chan — is a word (INTEGER*2) which on return from SYS$CREMBX will
contain the channel number assigned by VMS to the mailbox.

o %VAL(256) — indicates that the length of any message sent to this mailbox will
not exceed 256 bytes (or 256 characters in VAX FORTRAN).

o %VAL(1024) — specifies the size (in bytes) of a buffer set aside by VMS for
temporarily storing queued messages.

¢ ’digio_mbox’ — is the name given to the mailbox.

Any process wishing to queue a request to DIGIO should first assign a channel number
to the mailbox via the statement

status = SYS$ASSIGN (’digio_mbox’, digio_mbox_chan, , ,)
where digio_mbox_chan (INTEGER#2) is the returned channel number and is used

for all subsequent transfers of messages to the mailbox. The requesting process may

then send a message to digio_mbox via the system service routine SYS$QIOW of the
following form.

status = SYS$QIOW (, %AVAL(digio_mbox_chan),

1 %VAL(mbox_write_code), , , .
2 %REF(digio_message),
3 %VAL(length) , , , ,)
where

e digio_mbox.chan — is the channel number returned by SYS$ASSIGN.

11

b TR TN e S e

P R e okt

e mbox_write_code — is a longword (INTEGER#4) containing the SYS$QIOW func-
tion code “write to a mailbox™. This is set via

mbox_write_code = IO$WRITEVBLK .OR. IO$M_NOW

where the modifier I0$¥_NOW specifies that the requesting process should com-
plete the function call now rather than waiting for DIGIO to read the message,
and IO$WRITEVBLK is the mailbox write function. All the I0$. .. function codes
are defined in the system definition library module $I0DEF of the system library
file SYS$LIBRARY : FORSYSDEF . TLB. The $I0DEF module may be included in the
source code of the user written program with the statement:—

INCLUDE ’($IODEF)’
e digio_message — is the message to be sent to DIGIO (see description below).

e /VAL(length) — specifies the length of the message.
DIGIO reads messages queued in digio_mbox via the following SYS$GIOW call

status = SYS$QIOW (, %VAL(mbox_chan),
%VAL(mbox_read_code),
mbox_iosb, , ,
%REF (mbox_message) ,
%VAL(256))

WD

where all variables are similar to those in the previous SYS$QIOW call except that the
function code is given by

mbox_read_code = IO$READRBLK .OR. IO$M_NOW

The modifier I0$M_NOW specifies that the SYS$QIDW function is to be completed now
rather than waiting for the mailbox to contain a message. The input/output status
block mbox_iosb is specified by the structure:—

STRUCTURE /iostat_block/
INTEGER*2 iostat, msg_length
INTEGER*4 sender_pid

END STRUCTURE

RECORD /iostat_block/ mbox_iosb

In addition to the status of the data transfer, DIGIO can also obtain the length of
the message read, and the identity of the process which sent the message from this
status block.

4.3 The DIGIO Mailbox Message

Experiments with the MicroVMS system have indicated that when writing to or
reading from a mailbox a few long messages incur significantly less overhead than
many short messages. Hence, if a process requires several data transfers, it is better

12

e

LIS AN Koy TR, A

to combine them into one request, rather than to have a series of requests each
consisting of only one transfer. This arrangement has some disadvantages, the most
important being the loss of a one-to-one relationship between bus errors and data
transfer requests, but in normal circumstances where the error rate is low, the faster
overall rate of data transfer will outweigh this disadvantage.

Messages sent to digio_mbox are character variables with the following contents:—

® priority — indicates the priority of the request — ‘H’ for high, ‘L’ for low.
s requestor_index — identifies the requesting process.

e num_addresses — the number of addresses to or from which data is to be read
or written. A maximum of 50 addresses (and hence data transfers) may be
included in each request.

e addresses(i), i = 1, num_addresses — indicates the actual bus addresses
to or from which data is to be read or written.

These variables are encoded into the character array variable mbox_message via an
internal write statement with a format of:—

FORMAT (A1, 1X, I1, 1X, I2, <num_addresses>(1X, I4))

All information needed by DIGIO to complete the transfers is contained in this
message, except that there is no indication of the direction of each data transfer,
i.e. whether it is a read or write, as this is encoded directly in the bus address for
each data transfer, The parallel data bus follows the convention that all address to
which data may be written are odd (least significant bit set) while those which may be
read are even (least significant bit not set). Hence, it is possible to include a mixture
of reads and writes in a single request to DIGIO.

In addition to detecting whether an address is odd or even, DIGIO detects three
special addresses indicating a request for a non-standard operation on the bus. These
are:—

® 0000 — DIGIO treats this address as a NOP (no operation) and does not process
the address further. The need for such an address arises when a programmer
wishes to reserve a “space” in digio_message for a future bus operation that
is yet to be developed.

¢ 0001 — DIGIO sends a “trigger all analogue to digital converters (ADCs)” to
the bus to begin a sample of the current data values.

e FFFF — DIGIO sends a “master reset” to the bus. This code must be used with
eztreme care (see further comments in section 4.7).

In addition to sending the above message to the digio _mbox mailbox, a requesting
process must also notify DIGIO that a message has been sent. This is achieved by
setting an event flag (see section 4.6) — number 65 for a low priority request, or
number 64 for a high priority one.

13

g

P AT

4.4 The DIGIO Global Common Block

To coordinate the concurrent use of DIGIO by several processes, and to provide an
efficient means of communicating data between requesting processes and the parallel
bus, a global common area called digio_common is created. The data structures
contained in this common area are maintained either by DIGIO itself or by processes
using DIGIO. The common block and the variables which are contained in it are
defined in an include file DIGIO_INCLUDE.FOR (Appendix B). The data structures,
their purpose, and their usage are described in the following sub-sections.

4.4.1 Bus Module Usage Tables

Wind tunnel data gathering devices connected to the parallel bus are known as “in-
strumentation modules” or just “modules”. Each module is electrically distinct and
has one and only one physical connection to the bus. Modules usually coordinate all
data transfers associated with either a single device or a logical grouping of tunnel
instrumentation. For example, there is a strain gauge balance module incorporating
six strain-gauge amplifiers, their analogue to digital converters and their associated
controls, which coordinates all data transfers to or from a six-component strain-gauge
balance. Other modules are associated with Scanivalves, tunnel parameters, etc. In
its present form, the parallel data bus can handle up to 16 modules (numbered in
hexadecimal from 80 to 8F), but this could be extended if the need should arise. The
current allocation of modules to module numbers is included in Table 1.

Table 1: Allocation of module number to data acquisition modules.

Module Number Module Name
80 Auxiliary 6-Channel AC Amplifiers Module
81 Strain Gauge Module with 6-Channel AC Amplifiers
83 Scanivalve Module with 6-Channel DC Amplifiers
85 VPT Tunnel Parameter Module
87 LSWT Tunne) Parameter Module
8A Inclinometer Module
8B Actuator Module

Two variables in digio_common keep track of those modules which are electrically
connected to the bus. The first variable, module_table, is a logical array defined as

LOGICAL module_table(0:15)

in which each element is set to .TRUE. if the module with the corresponding number
is electrically connected to the bus. The second variable, module_names, defined as

CEARACTER*80 module_names(0:15)
is a similarly dimensioned array of character variables each with a length of 80

characters. If an element of module_table is .TRUE., the corresponding element
of module_names will contain a character string which identifies that module.

14

s

R R el R

Y s

These two variables are initialized by DIGIO when it is started, and are updated
whenever DIGIO receives a master reset command. In either case, DIGIO attempts
to read a special address (8x60, where x is the module number in hexadecimal, see sec-
tion 4.5) contained in each module which returns that module’s identification string.
If the string is not returned after 10 milliseconds, DIGIO times out and sets the
corresponding entry in module_table to .FALSE..

Processes requesting data transfers via DIGIO may use the information in this data
structure, typically to ensure that all modules required for their particular data trans-
fers are present, but they must not change any of the information contained in these
variables.

4.4.2 Data Arrays And Usage Indicators

When writing or reading data to or from the parallel bus, DIGIO obtains data to be
written and stores data which has been read in an array in the global common area
defined as

INTEGER*2 data_list(1000)

Each process transferring data via DIGIO is allocated one or more blocks of 50 ele-
ments within this array. In this way, the data belonging to one process using DIGIO
remains independent of all others. To keep track of which process owns which block
of elements within data_list and to determine where each procec:’s data are stored,
DIGIO maintains the following data structure

INTEGER#2 num_requestors
LOGICAL requestor_index_table(5)
LOGICAL data_usage_table(20)

The variable num_requestors contains the number of processes currently using
DIGIO for transfers to, or from, the parallel bus — the number of processes “con-
nected” to DIGIO. Currently, the maximum number of processes which may be con-
nected to DIGIO at any one time is set (somewhat arbitrarily) to 5. Whenever a
process wishes to connect to DIGIO it must first check that num_requestoxrs is less
than 5, and if so, increment num_requestors. When a process disconnects from
DIGIO, num_requestors must be decremented.

Having incremented num_requestors, a process connecting to DIGIO must then
find the first available empty (i.e. .FALSE.) element in requestor_index_table and
set it to .TRUE.. The index of this element then becomes that process’s unique
identifier (requestor index) in DIGIO and is used by DIGIO to derive several quantities
associated with that process. The connecting process will also require the value of the
requestor index and it should therefore also store it locally. When disconnecting from
DIGIO a process should return that element of requestor_index_table to .FALSE..

A connecting process must then allocate one or more blocks of 50 elements in the
array data_list for its own use. This is done by searching the data_usage_table for
an empty (i.e. .FALSE.) element and setting that element to .TRUE.. If the process
requires more than 50 elements of data_list, the process must ensure that as many
subsequent elements of data_usage_table as the number of blocks (of 50 elements

15

YR AT

‘e

in data_list) required are also empty, and set each one to .TRUE.. In other words,
the elements of data_list allocated to each must be contiguous.

In addition to the above variables defined in the DIGIO global common block, an
integer variable data_usage_index, defined locally within the connecting process, is
used to store the first entry of data_usage_table that is allocated to the process
so that when it disconnects from DIGIO, each element of data_usage_table set by
that process may be returned to .FALSE..

Another requirement of a process connecting to DIGIO is to determine the index of
the address in data_list where data for this process begins. This index is stored
in an integer variable data_start_addr, also defined locally within the connecting
process, and may be calculated via a statement of the form:—

data_start_addr = (data_usage_index - 1) * 50 + 1

4.4.3 Display Process Activity Indicator

The display process activity indicator variable, defined by
LOGICAL dspon

is used to indicate that a display sub-process (DSP???) is currently active. It is not
part of the DIGIO data structure, and is only included in the global common area for
convenience (this common is available to all processes connected to DIGIO). It is used
by various processes to determine whether or not certain computations which are only
required when a display process is active should be done. (This is necessary because
display processes may be started and stopped asynchronously without reference to
other processes.)

All display sub-processes must ensure that dspon is set to .TRUE. when they are
started, and returned to .FALSE. when they are stopped (so long as no other display
sub-process remains active).

4.4.4 Linking To The Global Common Block

For the global common block to be accessible by other processes, it must be installed
in system memory as a shareable image. The program, DIGIO_INSTALLED.FOR, was
created to install digio_common as a global common block. It contains the following
three statements:—

PROGRAM DIGIO_INSTALLED
INCLUDE ’[DATAIN.DIGIO]DIGIO_INCLUDE.FOR/LIST®
END

The program is compiled and linked as follow:—

$ FORTRAN DIGIO_INSTALLED
$ LINK/SBAREABLE DIGIO_INSTALLED

The file protection on the executable code, DIGIO_INSTALLED.EXE needs to be mod-

ified so that the “world” has read and write access to it. This is achieved by the
command:~—

16

$ SET PROTECTION:W=RW DIGIO_INSTALLED.EXE

To install the image (the executable code of a program), CMKRNL privilege is required.
The following steps show how this may be done:—

$ SET PROCESS/PRIVILEGE=CMKRNL

$ INSTALL CREATE $DISK1:[DATAIN.EXEIDIGIO_INSTALLED.EXE -
/SHARED/WRITEABLE

$ SET PROCESS/PRIVILEGE=NOCMKRNL

$DISK1: [DATAIN.EXE] is the directory where DIGIO_INSTALLED.EXE is located.
Any process that wishes to transfer data to, or from, the parallel bus via DIGIO
should include the global common block in its source code via the statement
INCLUDE ’[DATAIN.DIGIOIDIGIO_INCLUDE.FOR'’
When linking the object code, an option file containing the line
$DISK1: [DATAIN.EXE]DIGIO_INSTALLED/SHAREABLE

must be included in the LINK command with the /OPT qualifier. The following
dialogue shows how DIGIO.EXE is built (DIGI0.OPT being the option file):—

$ FORTRAN DIGIO.FOR
$ LINK/EXE=DIGIO.EXE DIGIO.0BJ,DIGIOLIB.OLB/LIB,DIGIO.OPT/CPT

DIGIOLIB.OLB is the object library containing the subroutines used by DIGIO.

4.5 Module Addresses

Each module number on the parallel bus is assigned 256 (100;¢) addresses of the
form 8x?7¢, where x is the module number in hexadecimal. Thus, module number
5 is assigned addresses from 8500, to 85FF,s. However only those addresses above
8x60,6 (i.e. a total of 160 (A0;¢)) are valid external read/write addresses.

To avoid the need for system software developers to be aware of the hexadecimal
addresses of each function on each module, all valid parallel bus addresses have been
mapped to an array defined by

INTEGER*2 address_list(0:1598)

Elements of address_list are defined in the file BUS_ADDRESSES.FOR and are in-
cluded in the main program unit of DIGIO at compilation time. Referencing this
array, rather than the actual bus addresses, allows system programs to be written
so that they are independent of changes in the allocation of bus addresses within
modules,

The three special bus addresses — No operation (NOP), master reset, and trigger —
are contained in address_list(0), address_list(1) and address_list(2) respec-
tively.

Appendices E and F give full listings of the allocation ¢! bus addresses to the array
address_list. Because of differences in module construction and usage in the two
wind tunnels, bus address allocations in the two tunnels are different.

17

ey 8

A e e

4.6 Data Transfer Complete/Error Notification
When DIGIO has completed processing a data transfer request, it will either:

1. set an event flag indicating that the transfer was completed successfully (the
success event flag) or,

2. set an event flag indicating that the transfer failed or was incomplete (the failure
event flag). There are two reasons for the failure event flag to be set:—

e the data bus failed to respond within a timed-out period (50 millisecond),
or

¢ at the completion of a low-priority request which has been either aborted,
or passed over, in favour of a high-priority one.

A group of event flags, or a common event flag cluster, has been specifically allocated
to be shared and used among processes’ communicating with DIGIO. This event flag
cluster is created with the SYS$ASCEFC system service. A process can reference this
cluster by invoking the same SYS$ASCEFC system service and specifying the same
cluster name. The DIGIO event flag cluster is given the name of dicluster and
is assigned to a character array variable, digio_efn_cluster. Note that although
VAX FORTRAN is a case insensitive language, the event flag cluster name is case
sensitive. Thus to create or associate a process with the DIGIO event flag cluster the
following code fragment is used.

CHARACTER*9 digio_efn_cluster
PARAMETER (digio_efn_cluster = ’dicluster’)

status = SYS$ASCEFC ({VAL(64), digio_efn_cluster , ,)

The common event flag cluster thus created consists of the 32 event flags from 64 to
95 inclusive.

As discussed above, most errors which occur on the parallel bus will be informative
rather than fatal. Typically, these errors will indicate that an input transducer (such
as a strain gauge amplifier) has been, for example, over-ranged. Generally such
events will not occur synchronously with requests for data transfers. Therefore, the
state of the error indicating interrupt (REQ A bit) on the DRV11 is continuously
monitored via an Asynchronous System Trap (AST) routine. Whenever an error is
detected, control is transferred to the AST routine (called DIGIO_ERROR_AST), which
determines the type and source of the error. It interrogates the parallel bus and
creates an error message containing the module number in which the error occurred,
an indication of whether or not the error is fatal (in which case the parallel bus
would have to be sent a master-reset before further data transfers are attempted),
and a description of the error. The AST routine sends this message to a mailbox
— the error mailbox — associated with each process currently connected to DIGIO.
The error message is packed into a single character variable 40 characters long, the
individual components being available via an internal read statement, as shown in
the following code fragment:—

"Processes can share s common event flag cluster only if they have the same group number in
their user identification code (UIC), i.e. they are executed by users whose UIC has the same group
number.

18

LY e

CEBARACTER error_message*40, message_text*37, severitysi
INTEGER*2 module_number

READ (error_message,10) severity, module_number, message_text
10 FORMAT (A1, I2, A37)

The AST routine will send a copy of the error message to mailboxes with names cre-
ated by the concatenation of ’error_mbox_’ with the requestor index of each process
currently connected to DIGIO. Hence, to receive an error message, each process must
create a mailbox with a name of the form error_mbox_?, where ? is the requestor
index of the process. The AST routine DIGIO_ERROR_AST then sets an error event
flag associated with each connected process to indicate that an error message has
been sent.

To allow all processes connected to DIGIO to proceed independently, DIGIO main-
tains a separate set of event flags — efn_success (success event flag) ,efn_failure
(failure event flag) and efn_error (error event flag) — for each connected process.
DIGIQ derives the event flag numbers allocated to each of these functions from each
connected process’s requestor index, requestor_index, via code of the form

efn_success
efn_failure
efn_error

63 + 3 * requestor_index
64 + 3 * requestor_index
65 + 3 * requestor_index

which allocates 3 consecutive event flag numbers for each connected process in the
range of 66 to 80. Each process connecting to DIGIO should therefore compute the
event flag numbers allocated for its use via code similar to that above.

It should be noted that the above event flags numbers (66 to 80), together with
numbers 64 and 65 used by connected processes when sending request messages,
should not be used for other purposes.

4.7 Master Reset

As mentioned above, a reference to address_list(0) (which translates to a bus
address of FFFF¢) in a data transfer request causes DIGIO to send a master reset to
the parallel bus. This should be used with extreme care since it destroys (initializes)
all data stored in all modules connected to the bus. However, a master reset is the
only way to initialize the parallel bus properly at power up, to reset the bus to a
known state whenever a module is electrically connected to or disconnected from the
bus, or to reinitialize the bus following a fatal (non-recoverable) error.

The first situation is taken care of by DIGIO. The other two are the responsibility
of system processes. However, before sending a master reset request to DIGIO and
hence to the bus, a process must be the only process connected to DIGIO — any other
process would have no knowledge of the change to the data on the bus. A process
which wishes to initiate a master reset must therefore ensure that num_requestors
is equal to one, indicating that only one process (itself) is connected to DIGIO.

19

1 b RS = P VAP

"T“*

5 SUMMARY OF REQUIREMENTS FOR A PROCESS COMMU-
NICATING WITH THE BUS VIA DIGIO

The following sections summarize the actions which must be taken by a process that
needs to transfer data to or from the parallel bus via DIGIQ. Many of these have been
at least implied in the descriptions of how the various parts of the system operate in
previous sections. However, in the following sections, the actions are grouped in a
logical order, and code fragments to achieve each action are provided.

5.1 Definition Of Variables

Before communicating with DIGIO, the data structure must be set up correctly for
the process. The following are definitions of some of the more important variables.

1. All system routines must be defined as INTEGER#4 variables before being used.
Some of these routines are

INTEGER*4 status,

SYS$CREMBIX,
SYS$ASSIGN,
SYS$ASCEFC,
SYS$DACEFC,
SYS$SETEF,
SYS$CLREF,
SYSS$WFLOR,
SYS$QIow

W0 ~N D WD WA

The variable status is widely used to hold the return status code of the system
routines, and must be defined as an INTEGER#4 also.

2. Two condition codes defined in the system object and shareable image libraries
used in the process’s code must be made known to the process. The easiest way
to do this is to define the condition codes as external symbols, thus

EXTERNAL ss$_vasset
EXTERNAL ss$_endoftile

The codes may then be referred to by using the built-in function ¥LOC which
returns the address of its argument.

3. Several variables must be available to all program units (routines) in the process.
These would normally be included in 3 common block shared by all program
units. These variables are:—

CHARACTER digio_message+*256
INTEGERs2 digio_mbox_chan,
i error_mbox_chan

INTEGER+4 requestor_index,
1 data_start_addr,

20

O e A R b i e

efn_success,
efn_failure,
efn_error,
efn_mask

"y W N

4. The remaining group of variables need only be defined in the program unit in
which they are used. These should be defined as follows:—

CHARACTER error_nbox_name*12,
1 error_message*40

CHARACTER digio_mbox_name*(*)
PARAMETER (digio_m>ox_name = ’digio_mbox’)

CEARACTER digio_efn_cluster=*(*)
PARAMETER (digio_efn_cluster = ’dicluster’)

INTEGER#4 mbox_write_code
PARAMETER (mbox_write_code = ’70°X)

INTEGER#*4 mbox_read_code
PARAMETER { mbox_read_code = ’71°X)

Note the use of PARAMETER statements to define several constants. The dis-
advantage of not being able to include such variab. s in COMMON blocks is out-
weighed by the protection given to their values — any attempt to change the
value of a constant defined via a PARAMETER statement will produce an error at
compilation time.

There are two include files designed to facilitate the creation of the above data struc-
ture. They are DIGIO_INCLUDE.FOR and DIGIO_DEFS.FOR, both of which reside in
the directory $DISK1: [DATAIN.DIGIO).

DIGIO_INCLUDE.FOR defines the global common block, DIGIO_COMMON, and its asso-
ciated variables (section 4.4). It must be included in each program unit (subroutines
and functions) which references any one of these variables. A listing of this include
file is given in Appendix B. Note that when linking, an option file must be included
to link to this shared, shareable common (see section 4.4.4).

DIGIO_DEFS.FOR defines the standard variables (groups of variables referred to in
items 3 and 4 above) re.aired by a process when communicating with DIGIO. It
defines the variables common (but defined locally within the process) to all requesting
processes such as digio_mbox_name, low_priority_efn and high_priority_efn. It
also defines process-specific variables such as digio_mbox_chan, error_mbox_name,
requestor_index and so on. These process-specific variables are grouped into a
common block named process_common so that they may be used by all the routines
within the process. Appendix C contains a listing of this file.

These files are included into the appropriate program units with the statements

INCLUDE ’$DISK1:[DATAIN.DIGIO}DIGIO_INCLUDE.FOR’
INCLUDE *$DISK1:[DATAIN.DIGIO]DIGIO_DEFS.FOR’

and the appropriate variables will be defined and set up accordingly.

21

e —

5.2 Connecting To DIGIO

Before a process can transfer data to or from the parallel bus, it must “connect” to
DIGIO via the following steps:—

1. Associate the DIGIO common event flag cluster with
status = SYS$ASCEFC (%VAL(64), ‘dicluster’)
2. Connect to the DIGIO mailbox by
status = SYS$ASSIGN (digio_mbox_name, digio_mbox_chan, , ,)
3. Increment the number of processes connected to DIGIO via
num_requestors = num_requestors + 1
Note that the value of num_requestors should be checked before incrementing

and if it is greater than, or equal to 5, the connection cannot be made until one
or more processes disconnects from DIGIO.

4. Determine the process’s requestor index via

i=1

DO WHILE (requestor_index_table (i))
i=i1i+1

END DO

requestor_index_table (i) = .TRUE.
requestor_index = i

The above code Jocates the first empty (.FALSE.) element in the array
requestor_index_table, sets it to .TRUE. and remembers the value as
requestor_index.

5. Creale the process-specific error mailbox via

error_mbox_name(1:11) = ’error_mbox_’

WRITE (error_mbox_name(12:12),10) requestor_index
.0 FORMAT (It)

status = SYS$CREMBI (%VAL(1),

1 error_mbox_chan,
2 IVAL(40), , , .
3 error_mbox_name)

6. Determine a starting address i« the process’s data storage area in data_list.
First locate the first empty (FALSE.) element in the array data_usage_table
via

i=1

DO WHILE (data_unsage_table(i) .AND. i .LE. 20)
i=31i+1

END DO

22

s A PRC um

If this process requires 50 or less locations in data_list (which will be the case
for most of the processes connecting to DIGIO), the area in data_list pointed
to by this element of data_usage_table will be sufficient. The connecting
process must now mark this element in data_usage_table as being used and
add the computed starting address to data_start_addr. The index of the first
entry in data_usage_table is stored in data_usage_index via

data_usage_table(i) = .TRUE.
data_usage_index = i
data_start_addr = (i -1) =50 + 1

If this process requires more than 50 locations in data_list, then it must en-
sure that as many subsequent elements of data_usage_table as the number of
blocks (of 50 elements in data_list) required are also free (.FALSE.). Other-
wise, the procedure is as set out above.

In both cases, if less than the required number of elements in data_usage_table
is available, the connection must be aborted.

7. The event flag numbers allocated to this process must be computed from the
value of requestor_index via

efn_success = 63 + requestor_index * 3
efn_failure = 64 + requestor_index * 3
efn_error = 65 + requestor_index * 3

To allow the process to detect the setting of either the success or failure event
flag via the SYS$WFLOR system service routine, an event flag mask can be created
which is the logical OR of the success and failure event flag numbers. This may
be achieved as follows

0
IBSET (efn_mask, MOD (efn_success, 32))
IBSET (efn_mask, MOD (efn_failure, 32))

efn_mask
efn_mask
efn_mask

The above procedures have been included in the subroutine CONNECT_DIGID with the
standard variables defined as in DIGIO_DEFS.FOR. The calling syntax of this routine
is

CALL CONNECT.DIGIO (digio_status)

where digio_status is an INTEGER+4 variable (pre-defined in DIGIO_DEFS.FOR) re-
turned from CONNECT_DIGIO indicating if the connection is successful (1) or not (0).

This subroutine is contained in the object library DIGIOLIB.OLB located in the direc-
tory $DISK1: [DATAIN.DIGIO], and may be linked to the executable code of a user
program with the LINK qualifier $DISK1: [DATAIN.DIGIO]DIGIOLIB.OLB/LIB.

8.3 Transferring Data Via DIGIO

Once a process has successfully connected to DIGIO it may read or write data from
or to the parallel bus by sending request messages to the digio mailbox.

23

B SR

Whether the request is for a read or a write, the first part of the DIGIO message
remains the same, varying only with the priority of the request. It is therefore useful
to generate this “header” part of the message once, and then to use it as part of all
subsequent messages. This may be done via

digio_message(1:1) = ’§’
WRITE (digio_message(2:3),10) requestor_index
10 FORMAT (1X, I1)

which generates a high priority request message. Substitution of an 'L’ for the ’B?
achieves the same for a low priority request.

The remainder of the message is dependent on the particular data to be transferred.
If, for example, six variables (e.g. the outputs of six analogue to digital converters)
are to be transferred from the sting balance strain gauge module, the remainder of
the message could be generated via

digio_message(4:36) = ° 6 102 103 104 108 106 107’

which indicate that six addresses are to be transferred and includes the indices
of the required elements of address_list. These values are defined in the file
BUS_ADDRESSES .FOR which is used by DIGIO as a look up table for the appropri-
ate addresses to be sent to the data bus.

The request message is sent to the DIGIO mailbox via the system service routine
SYS$QIOW:—

status = SYS$QIOW (, %VAL(digio_mbox_chan),

1 %VAL(mbox_write_code), , , ,
2 %REF(digio_message),
3 %VAL(286), , , ,)

The requesting process should then wait for DIGIO to set either the success or failure
event flag to indicate that the request has been completed, determine which event
flag was set, and process the data as required.

The subroutine DIGIO_SEND is designed to simplify the process of constructing the
digio_message and the SYS$QIOW calling sequence. To request a data transfer, it
is only necessary to put the required address indices into the array addr_index and
invoke the routine with the following syntax:

CALL DIGIO_SEND (num_addresses, addr_index, digio_status)
where

¢ num_addresses — is an INTEGER+4 variable (pre-defined in DIGIO_DEFS.FOR)
indicating the number of addresses to be sent,

o addr_index — is an INTEGER+2 array (pre-defined in DIGID_DEFS.FOR) con-
taining the indices of the addresses to be sent, and

s digio_status — is an INTEGER+4 variable indicating the return status of the
routine, If digio_statuss=1 the operation is successful. If digio_status=0 the
operation fails, and if digio_status=-1 an error has occurred.

24

Bar ae h e A DR S o M TIRAT AP TN U

The object code of DIGIO_SEND is found in $DISK1:[DATAIN.DIGIO]DIGIOLIB.OLB
and may be linked to a user’s program in the usual manner.

Note that the values read from the parallel bus are stored by DIGIO in data_list,
beginning at the start of the requesting process’s area, i.e. at data_start_addr, and
in the same order as they appear in the request message or in addz_index. The values
are returned in data_list as INTEGER*2 variables, and are able to represent the full
16 bit precision generated by the analogue to digital converters used on the parallel
bus. Outputs from the analogue to digital converters are returned by DIGIO as
offset binary (0000,6=+32768,0, TFFF16=0,0, and FFFF,=-327671¢). To convert
the values in data_list from this form to the two’s complement binary used by
the MicroVAX (800016‘—"—3276810, 0000,6=0,0 and 7F FF132+3276710), the following
code fragment may be used.

INTEGER*2 mask
PARAMETER (mask = *TFFF'X)

adc_value(i) = IIEOR (data_list(j), mask)

Note that there are two “reserved” words in the range returned by DIGIO; 0000;¢ or
null, and FFFF,¢ which if returned indicates that the data are not valid.

To write data to the bus, the procedure is similar, with the obvious exception that the
data to be written must reside in data_list before the request message is sent. For
example, to send a value to the bus to be used as a reference length for the Reynolds
number calculations (for which the bus address resides in address_list(522)), the
following code could be used.

data_list(data_start_addr) = renlen / 1000.
digio_message(8:15) = * 1 522’

status = SYS$QIOW (, %VAL(digio_mbox_chan),

1 %VAL(mbox_write_code), , , ,

2 %REF(digio_message),

3 %VAL(256), , , ,)

status = SYS$SETEF (%VAL(64))
gtatus = SYS$WFLOR (%VAL(64), %VAL(efn_mask))
status = SYS$CLREF (%VAL(efn_failure))

IF (status .EQ. %LOC(ss$_wasset)) THEN

Y Failure flag was set - do whatever is necessary
END IF

If the subroutine DIGIO_SEND is employed, the code fragment would then read:—
data_list(data_start_addr) = renlen / 1000.

num_addresses = 1
addr_index(1) = 522

25

A I AN L LA T T T e

PP

-

L s

CALL DIGIO_SEND(num_addresses, addr_index, digio_status)
IF (digio_status)

c Operation successful!
ELSE

c Operation failed!
END IF

5.4 'Treating Errors

Whenever an error occurs on the parallel data bus, DIGIO sends an error message to
the specific mailbox associated with each process connected to DIGIO (this mailbox
was created in step 6 of the connection process, described in section 5.2, or in the
DIGID_CONNECT routine). Whenever DIGIO sends such a message it notifies each
connected process by setting its error event flag. Bus errors may occur at any time,
and if not read by a connected task, will simply accumulate in each process’s error
mailbox. Thus whenever it is important for the process to be aware of possible errors,
the error event flag should be checked and, if set, control transferred to a routine which
reads and decodes the error message. This may be achieved via code such as

status = SYS$CLREF (%VAL(efn_error))

IF (status .EQ. %LOC(ss$_wasset)) THEN
CALL TREAT_ERROR

END IF

It is important that connected processes check the error event flag after each data
transfer (to ensure the validity of data sent or received), and also before sending
a request message. If a fatal error has occurred since the error event flag was last
checked, any further messages sent to DIGIO will not be treated correctly, and at
worst, DIGIO may never reply to the message, thus hanging the requesting process.

The routine used to read and decode error messages must allow for the possibility that
more than one error message has accumulated in the error mailbox. One approach
to this would be as follows:—

STRUCTURE /iostat_block/
INTEGER#*2 status, msg_length
INTEGER*4 sender_pid

END STRUCTURE

RECORD /iostat_block/ mbox_iosb
CEARACTER error_message+*40
EXTERNAL ss$_endoffile

mbox_iosb.status = 1
DO WHILE (mbox_iosb.status .NE. {L0OC(ss$_endoffile))
C sx24+ Read the Mailbox until no more messages
status = SYS$QIOW (, %VAL(erroxr_mbox_chan),

1 %VAL(mbox_read_code),

2 mbox_iosd, , ,

3 %REF (erTor_message),
26

S T

r ¢ e s et

4 %vAL(40), , , ,)
IF (mbox_iosb.status .EQ. %LOC(ss$_endoffile)) RETURN
C ##xx* Decode the error message and treat accordingly

END DO
The external variable ss$_endoffile is the system service status code indicating
that there are no more messages in the mailbox.

5.5 Disconnecting From DIGIO

Before a process which has connected to DIGIO exits, it must return the DIGIO data
structures to their original state. This may be done using the following steps.

1. Return this process’s entry in requestor_index_table to .FALSE. i.e.
requestor_index_table (requestor_index) = .FALSE.

2. Return this process’s entry in data_usage_table to .FALSE. i.e.
data_usage_table (data_usage_index) = .FALSE.

3. Decrement num_requestors.

4. Disassociate the DIGIO common event flag cluster via
status = SYS$DACEFC (%VAL(64))
5. Delete the error mailbox associated with this process:
status = SYS$DELMBX (%VAL(error_mbox_chan))

The process is then free to exit. The subroutine BXIT_DIGID is provided to perform
the above tasks and is called by

CALL EXIT_DIGIO

EXIT_DIGIO is contained in the object library $DISK1: [DATAIN.DIGIO]DIGIOLIB.OLB.

6 CONCLUSIONS

A software interface, DIGIO, has been developed for the new data acquisition system
in the two main wind tunnels at ARL. It has been developed on a DEC MicroVAX I
computer equipped with a DRV11 parallel I/O interface adapter. Access to the three
registers of the DRV11 adapter is provided from the software by direct mapping of the
Q22-Bus I/0 page to program variables. This method produces a fast and efficient
means of communicating with the parallel data bus via the DRV11 interface.

27

——

DIGIO handles all the instrumentation control and data transfer requests from various
data acquisition processes. Up to five processes may access the parallel data bus at
one time, which provides great flexibility for developing data acquisition software.
Details have been provided of the steps which must be included when developing
data acquisition software that needs to access the data bus via DIGIO.

28

P R e]

-

REFERENCES

[1] J. F. Harvey. A Data Acquisition Parallel Bus For Wind Tunnels At ARL.
Flight Mechanics Technical Memorandum 412. Aeronautical Research Labora-
tory, DSTO Australia, August 1989.

[2] DRV11 User’s Manxal. Order number EK-ADV11-OP-002, Digital Equipment
Corporation, Massachusetts USA, April 1977.

[3] S. C. Johnson. Efficient Implementation of Real-Time Programs Under the
VAX/VMS Operating System. NASA Technical Memorandum 86354, 1985.

[4] VAX/VMS System Generation Utility Reference Manual. Order number AA-
Z433A-TE, Digital Equipment Corporation, Massachusetts USA, April 1986.

[5] MicroVMS Programmer’s Manual. Order number Al-Z212B-TE, Digital Equip-
ment Corporation, Massachusetts USA, April 1986.

[6] Writing a Device Driver for VAX/VMS. Order number AA-Y511B-TE, Digital
Equipment Corporation, Massachusetts USA, April 1986.

[7] MicroVMS Programming Support Manual. Order number AI-DC87B-TE, Digital
Equipment Corporation, Massachusetts USA, April 1986.

[8] VAX FORTRAN User Manual. Order number AA-DO35E-TE, Digital Equip-
ment Corporation, Massachusetts USA, June 1988.

29

T DAY s T M SIS T, AL o S AP

APPENDIX A
MODIFICATIONS TO THE DRV11 CIRCUIT BOARD

A design fault in the circuitry of the DRV11 circuit board prevents the interface card
from functioning properly. This has been corrected by modifying the circuitry of the
Integrated Circuit chip at the right hand top corner on the component side of the
board, as shown in Figure A.1. The modifications, as shown in detail in Figure A.2
are:~

o The electrical connection between pins 8 and 9 is broken by cutting the circuit
path between the two pins on the circuit side of the board.

o A jumper is wired between pins 6 and 9 to provide electrical connection between
the two pins.

Location of the Chip
to be modified

Figure A.1: Schematic layout of the DRV11 adapter board.

- - oo
-

BN Jumper installed
> ':.‘/bemenpimsws

Electrical connection
cut between pins
g8and9

|

Jlllll\ll"
[]
Ts

Figure A.2: Enlarged view of the chip to which modifications are made.

30

s —ra——

s R L SRR ki AP T

APPENDIX B
LISTING OF THE INCLUDE FILE DIGIO_INCLUDE.FOR

aaaa

aa

[+]

(]

a

[}

START OF DIGIO_THCLUDE.FOR

Define Module Usage Data

LOGICAL module_Table(0:15) True if module electrically
connected to the bus.

CHARACTER*80 module_Name(0:15) Returned when module

- m w cm

interrogated.
Define DIGIO Usage Indicators
INTEGER»2 num_Requestors ! The number of processes
! connected to DIGIO. (max 5)
LOGICAL requestor_index_table(S)! True if process comnected

! with this index.

! True if the 50 location

! block of data_list is in use.
1 dspon ! True if a display sub_process

! is executing.

LOGICAL data_usage_table(20),

Define variable to data arrays

IKTEGER*2 data_List(1000) ! Array to hold bus data

Detine Global Common Block DIGIO_COMMON

COMMOY /digio_common/ module_Table, module_Name,

1 num_Requestors, requestor_index_table,
2 Tequestor_start_add, data_usage_table,
3 data_List,
5 dspon
» END OF DIGIO_INCLUDE.FOR
31

-t

-~ 1 e

SLmw N sy et

o p———

B Y

[1]

APPENDIX C
LISTING OF THE INCLUDE FILE DIGID DEFS.FOR

[£]

aaonn

(1]

START OF DIGIO_DEFS.FOR

Commonly used variables for communication with DIGIO

CHARACTER error_mbox_names12,

1 error_messages40,

2 prioritysi

INTEGER+2 digio_mbox_chan, ! digio mail box channel

1 error_mbox_chan, ! exrror mail box channel

2 addr_index(50) ! index of BPI bus addresses

INTEGER+4 requestor_index,
digio_status,
data_start_addr,
high priority_efn,
low_priority_etn,
ofn_success,
ofn_failure,
efn_exxor,
efn_timer,
ofn_mask

00NN B WM

PARAMETER (low_priority_efn = 65 , ! efn set by requesting process
1 high_priority efm = 64) ! depending on priority

PARAMETER (ofn_timer = 95) ! ofn of the timer to be set if
! DIGIO does not respond within
! the timeout period

CRARACTER digio_mbox_names(s)

PARAMETER (digio mbox_name = ’digio_mbox’)

CRARACTER digio_efn_clustexrs(s)
PARAMETER (digio_efn_cluster = ’dicluster’)

The following common block is shared by routines within the
same process only.

COMMON /process_common/ digio_mbox_chan, error_mborx_name,

1 exror_mbox_chan, requestor_index,
2 data_start_addr, efn_success,

3 ofn_failure, efn_error, efn_mask,
4 prioxity

ERD OF DIGIO_DEFS.FOR

32

-~

P R a2

v oewes o pmenny

'T——"—“—

[4

aaogaoaooo0o00000000000000

aaa

[+]

00

[,]

APPENDIX D
LISTING OF THE SUBROUTINE DR_INIT.FOR

SUBROUTINE dr_init

This Subroutine initialires the DRYi1 “driver". It does the
following:~

(1) Maps the page of physical memory containing the DRil’s
Tegisters (part of the Q22 bus or I0-page) to the processes
virtual memoxry. References to these locations on the (22 bus
may then be made by reference to the array “dr_iopage” which
is 256 words (512 bytes - 1 page) long, contained in common
block "dr_common" which is linked to be page aligned via the
link option file "“dr_init.opt"

(2) Connects to the DR11’s interrupt vectors. Then whenever
interxrupt 4 is set, event flag 10 vill be raised, and shenever
interrupt B is set, the AST routine digio_sxzor_ast will be
executed. This AST routine treats and signals all bus errors.

Include commons

INCLUDE ’[datain.digioldr_include.fox/list’

Detine system routines used

EXTERNAL io$_conintread

INCLUDE ? ($secdet)’

INTEGER+4 status, ! system service routines.

2 sys$assign, ! assign a channel to mbox.
7 sys$qio, ! queus an i/o request.

8 sys$crmpsac, ! create a mapped section.

6 lib$signal ! signal error.

Define vaxiables for CRMPSC Call

INTEGER#4 dr_inadr(2), ! Two longwords to contain io page address
1 dr_retadr(2) ! Two longwords to comtain returned address

INTRGER+4 pfn ! io-page frame number
PARAMETER (pfn = ’100007°X)

INTEGER*4 mask ! Longword to comtain section characteristics

! ~ pfn mapping, writeable

PARAMETER (mask = sec$am_pfumsp .0R. sectm_wrt)

Define variables for ASSICN Call

33

v e s

s

Lo et

- — e -

R

4

(4
INTEGER+2 dra_chan, ! Channel number for interrupt A “device"
1 drb_chan ! Channel number for interrupt B “device”
c
c Set up variables for Connect to Interxupt Call
c
INTEGERs2 fcode ! Fanction code word
STRUCTURE /flag/
UNION
MAP
INTEGER+2 switches /5/ ! cin$m_repeat or cin$m_efn
INTEGER*2 efnum
END MAP
map
INTEGERe4 flagword
END MAP
END UNION
ERD STRUCTURE
RECORD /tlag/ dra_flags
RECORD /flag/ drb_flags
BITERNAL digio_error_ast
(4
4 sssssesesssserssBEGINNING OF BXECUTABLE CODE
c
¢
c Set up variables and map io-page
c
dr_inadr(1) = %LOC(dr_iopage(0))
dr_inadr(2) = %L0C(dr_iopage(255)) + 1
status = SYS$CRMPSC(dr_inadr, dr_retadr, , XVAL(mask), , , ,
1 » 1, XVAL(pfn), ,)
C
c Check that the mapping was done correctly -~ input and retura
c start and end addresses should be the same
4
IF(.NOT. status) CALL LIB$SIGNAL(XVAL(status))
IP((dr_inadr(1) .NE. dr_xretadr(1)) .OR.
1 (dr_inadr(2) .NE. dr_retadx(2))) THEN
TYPE », ’ s»se J0-Page not mapped correctly’
TYPE 10, dr_inadr(1), &r_inadr(2)
10 FORMAT (’ Input addresses are :- ’, 26, 5, 26)
TYPE 20, dr_retadr(1), dr_retadx(2)
20 FORMAT (’ Returmed addresses axe :~ ', Z6, 5X, 26)
CALL LIBS$SIGNAL(%VAL(status))
EED IF
c
¢ Assign both "devices” and get channel numbexs
¢

© -

(1]

(2]

[+]

aa

status = SYS$ASSIGHN(°'_OAAO:’, dra_chan, ,)
IP(.NOT. status) CALL LIBSSIGNAL(%VAL(status))
statur = SYS$ASSIGN(>_0ABO:’, drb_chan, ,)
IF(.NOT. status) CALL LYBSSIGNAL(%VAL(status))

Connect to interrupts on both channels

For OAAO: - REQ A - the done flag - raise efn 1

fcode = LLOC(io$_ConintRead)

dra_flags.efnum = §

status = SYS$QI0D (, %VAL (dra_chan)}, XVAL(fcode), , , , , »
1 %AVAL (dra_flags.flagword), , ,)

IF(.NOT. status) CALL LIBS$SIGNAL(ZVAL(status))

For OABO: - REQ B - the error flag - go to digio_error_ast

drb_flags.efnum = 0

drb_flags.switches = 4

status = SYS$QI0 (, AVAL (drb_chan), XVAL(fcode), , , , , ,
1 AVAL (drb_flags.flagwoxrd), digio_error_ast, , %val(2))
IF(.NOT. status) CALL LIB$SIGHAL(ZVAL(status))

Complete - returam to caller

35

APPENDIX E
LIST OF BUS ADDRESSES IN LOW SPEED WIND TUNNEL

c
c START OF BUS_ADDRESSES
¢
c
c Detinitions of Data Acquisition Parallel Bus addresses
¢ allocated in LSWT -~ to be included in DIGIO.FOR
C
INTEGER»2 address_list (0:1599)
c
[+ Addresses that generate special events
c
DATA addreas_list(0) / ’0000°X / ' NOP
DATA addresas_list(1) / *FFFF’X / ! MASTER RESET
DATA address _list(2) / *1°X / ! Trigger all Modules
c
c Addresses relating to the Tunnel Parameter Module
c

DATA address_list(500)
DATA address_list(501)
DATA address_list(502)
DATA address_list(503)
DATA address_list(504)
DATA address_list(508)
DATA address_list(506) '8TTRPY /
DATA address_list(507) *8TID’Y /

/ ’8170°X /
/
/
/
/
/
/
/
DATA address_list(508) / *8783’X /
/
/
/
/
/
/
/
/

'8772°X /
18774°X /
'8776°X /
'8778°1 /
8TTAX /

¥ ~ data value read

M - data value xead

Delta P - data value read

Ps - data value read

T - data value read

Re - data value read

¥ set write

N set write

Clear screen options write
Raster code options write
Large graphics options write
Small graphics options write
Air temperature display write
Fault/service message write
Display Nessage (write)

Vrite into master message buffer
Load Ren No ref len (write)

DATA address_1list(509) '8789°X /
DATA address_list(510) 1878F°Y /
DATA address_list(511) 18796°X /
DATA address_list(512) 18779 /
DATA address_list(513) / *87A7°X /
DATA address_list(514) '87A1°X /
DATA address_list(515) '8TAD’X /
DATA address_list(516) / *877B’X /

B e rn 4 em M L st @ G e AW NS Sw e G

C #ss+ Display control commands

DATA address_list(5620) / ’8769°1/ ! Change display Mode

DATA address_list(521) / ’8783°X/ ! Clear display

baTA address_11ist(522) / ’8785°X/ ! Change background rastax

DATA address_list(623) / ’8787’Xx/ ! Select large char display

DATA address_list(524) / 8789’1/ ! Select medium char display

DATA address_list(525) / '878B'X/ ! Select display on line 13

DATA address_list(526) / ’878D’X/ ! Select display on line 14 & 15
C see Send data commands

DATA address_list(530) / '8791’'X/ ! Sead message for display

DATA address_list(531) / ’8793'1/ ! Send first label

DATA address_1ist(632) / *8796°1/ ! Sead first mwwber

DATA address_list(533) / ’8797°'Y/ ¢ Send second label

DATA address_1ist(534) / '8799°L/ ! Send second number

DATA address_list(535) / ’879R’X/ ! Send third ladel

et e M A

o -

(£]

DATA

DATA
DATA
DATA
DATA
DATA
DATA

address_list(536) /

address_list(540) /
address_list(541) /
address_list(542) /
address_list(543) /
address_list(544) /
address_list(545) /

'879D°%/

'87F0°X/
'87TF1°X/
18TF2°X/
'8TF3°1/
'874C°1/
'8TAD’X/

- ow om e e m

Send third number

Input Coef ID for update
Write Coef ID for update
Input Coef ID for read
VWrite Coef ID for read
Read Master Message buffer
Write Mastexr Message buffer

Addresses relating to the SG amplifier module

C »s¢ Data Value reads of all channels

C sss Reads for

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

address_list (100) /
address_list(101) /
address_list(102) /
address_list(103) /
address_list(104) /
address_list(105) /
address_list(106) /
address_list(107) /

channels in pairs

address_list(108) /
address_list(109) /
address_list(110) /
address_list(111) /
address_list(112) /
address_list(113) /
address_list(114) /
address_list(115) /
address_list(116) /
address_list(117) /
address_list(118) /
address_list(119) /
address_list(120) /
address_list(121) /
address_list(122) /

C e¢se Calibration Relay Operations

(1]

DATA
DATA
DATA

address_list(123) /
addrens_list(124) /
address_liat(125) /

18169°X /
'81F4°X /
18170°X /
’8172°1 /
18174°X /
18176°X /
18178°X /
'8174°X /

'18171°X /
’81D0°X /
'8170°X /
181D2°X /
’8172°X /
’8175°X /
'81D4°X /
18174°X /
'81D6°X /
°8176°1 /
'8177°X /
'81D8°X /
'8178°X /
181DA°X /
'8174°X /

*81F0°X /
'81F1°X /
'81P1°X /

Triggexr conversion on all ADC’s
Read ADC conversion buffer

Read ADC channel 1
Read ADC channel 2
Read ADC channel 3
Read ADC channel 4
Read ADC channel §
Read ADC channel 6

Trigger Channels 1
Read ADC channel 1
Read Channel 1
Read ADC channel 2
Read Channel 2
Trigger Channels 3
Read ADC channel 3
Read Channel 3
Read ADC channel 4
Read Channel 4
Trigger Channels §
Read ADC channel §
Read Channel §
Read ADC channel 6
Read Channel 6

& 2
status buffer

status buffer

&t 4
status buffer

status buffer

e 6
status buffer

status buffer

Read calibration relay status
Turn Calibration Relay ‘0K’
Turan Calibratiom Relay 'OFP’

Addxesses relating to the Inclinometer module

DATA
DATA
DATA
DATA
DATA

DATA
DATA

DATA
DATA
DATA
DATA

addxress_list (160) /
address_list(181) /
address_list(152) /
address_list(153) /
address_list(154) /

address_list(155) /
address_list(156) /

address_list(187) /
address_list(168) /
address_list(1859) /
address_list(160) /

'8463'X /
'8470°X /
*8a72'1x /
'8AT4'T /
'8476°X /

'SAT1'X /
*8A75°X /

'8AT8'X /
'SATA’X /
'SATC'T /
'8ATR'Y /

37

- em m e s

Trigger conversionm oa all ADC
Read ADC 1, chamnel 1 - X
Read ADC 1, chammel 2 - ¥
Read ADC 2, channel 1 - 2
Read ADC 2, chamnel 2 - temp

! Triggex ADC 1

Trigger ADC 2

Bead Roll as calculaied
Read Pitch as calculated
Read required Roll Uffaet
Read required Pitch Offset

e s ——— et

- — e AT

DATA
DATA
DATA
DATA

address_list(161) /
address_list(162) /
address_list(163) /
address_list(164) /

IBATD’X /
'8ATPX /
'8AAB’X /
BAAD°X /

- e s o

Write Cal. Roll Offset
Write Cal. Pitch Offset
Model Alignment

Select Gflex Transducer

c
c Addresses relating to the Actuator module
C
DATA address_list(800) / ’8B69°X / ! Trigger simmltaneous move
DATA address_list(801) / ’8BD1°XI / ! Manual drive ~ chamnel
DATA address_list(802) / ’8BD3°X / ! Manual drive - move
DATA addreas_list(803) / ’8BDS’X / ! Manual drive ~ exit
DATA address_list(804) / °8B66°XI / ! Read calibration cosff.
DATA address_list(808) / ’8B60°XI / ! Read exror code
DATA address_list(806) / *8B61°I / ! Reset erroxr status
DATA address_list(807) / ?8B€6'’I / ! Clear status/error buffer
DATA address_list(808) / ’8B67°X / ! Clear exror & flag bits
DATA address_list(809) / >8BD0°XI / ! Read Motoxr Status Register
C sss Channel 1
DATA address_list(810) / ’8B70°X / ! LVDT Reading to master
DATA address_list(811) / *8B71°I/ ! Angle to Move to
DATA address_list(812) / ’8B72°X / ! Current angle
DATA address_list(813) / ’8B73°X / ! Set upper limit
DATA address_list(814) / *8B74°X / ! Read upper limit
DATA address_list(816) / *8B75’X / ! Set lower limit
DATA address_list(816) / ’8B76°'X / ! Read lower limit
DATA address_list(817) / ’8B77°'X / ! Set OUffaet angle
C ¢se¢ Channel 2
DATA address_list(820) / ’8B78°X / ! LVDT Reading to master
DATA address_list(821) / *8B79°X / ! Angle to Move to
DATA address_list(822) / ’8B7A’X / ! Curremt angle
DATA address_list(823) / ’8BTR’XY / ! Set upper limit
DATA address_list(824) / 8B7C’Y / ! Read upper limit
DATA address_list(826) / ’8B7TD’X / ! Set lower limit
DATA address_list(826) / ’8B7R'X / ! Read lower limit
DATA address_list(827) / ’8BTP’I / ! Set Offset angle
C #s¢ Channel 3
DATA address_list(830) / '8B80°X / ! LVDT Reading to master
DATA address_list(831) / ’8B81°X / ! Angle to Move to
DATA address_list(832) / ’8B82°'I / ! Curremt angle
DATA address_list(833) / ’8B83°XY / ! Set upper limit
DATA address_list(834) / '8884°X / ! Read upper limit
DATA address_list(836) / ’8B85°X / ! Set lower limit
DATA address_list(836) / *8386°X / ! Read lower limit
DATA address_list(837) / *8B87°X/ ! Set Dffset angle
C ees Channel 4
DATA address_list(840) / ’8B88'X / ! LVDT Reading to master
DATA address_list(841) / '8389’X / ! Augle to Nove to
DATA address_list(842) / ’8384°X / ! Curreat angle
DATA address_list(043) / 'SBSR’Y / ! Set wpper limit
DATA eddress_list(844) / '838C°X / ! Read uppexr limit
DATA address_list(848) / ’SBSD’'X / ! Set lower limit
DATA addvess_list(946) / '8BSR’Y / ! Read lower limit
DATA address_list(847) / *8BEP°Y / ! Set 0ffset angle

C sse Channel §

PP ——

+ rasma o A

b Y — AT

P

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

C s=+ Channel 6
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

C sss Channel 7
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

C sss Channel 8
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

¢ se¢ Channel 9
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

address_list(850) /
address_list(851) /
address_list(852) /
address_list(853) /
address_list(854) /
address_list(855) /
address_list(856) /
address_list(857) /

address_list(860) /
address_list(861) /
address_list(862) /
address_list(863) /
address_list(864) /
address_list(865) /
address_list(866) /
address_list(867) /

address_list(870) /
address_list(871) /
address_list(872) /
address_list(873) /
address_list(874) /
sddress_list(875) /
address_list(876) /
address_list(877) /

address_list(880) /
address_list(881) /
address_list(882) /
address_list(883) /
address_list(884) /
address_list(885) /
address_list(886) /
address_list(887) /

address_list(890) /
address_list(891) /
address_list(892) /
address_list(893) /
address_list(894) /
address_list(895) /
address_list(896) /
address_list(897) /

’8890°X /
’8B91°X /
*8B92°X /
'8B93°1 /
78894°X /
'8B96°I /
'8B96°X /
*8B97°X /

*8B98°X /
'8899°X /
'8B9A°X /
*8B9B’X /
1889C°I1 /
1889D°X /
Y8BIR’T /
'8BIF’X /

*8BAOX /
’8BA1°X /
'8BA2°X /
’8BA3’X /
'8BA4’X /
I8BAS’X /
*8BA6°X /
18BATX /

'8BAS°X /
'8BAY’X /
*8BaA°Y /
'8BAB’X /
'8BAC’X /
'8BAD’X /
'8BAB’X /
'8BAF’X /

'8BBO’X /
'8BB1°X /
'8882°X /
’8BB3°X /
'8BBA’X /
'8BBS°X /
?8BB6°IX /
'SRBT’X /

39

o sm sm e w @ e tw

- tm w e em cw m w

LVDT Reading to master
Angle to Move to
Current angle

Set upper limit

Read upper limit

Set lower limit

Read lower limit

Set 0ffset angle

LYDT Reading to master
Angle to Move to
Current angle

Set upper limit

Read upper limit

Set lower limit

Read lower limit

Set 0ffset angle

LVDT Reading to master
Angle to Move to
Current angle

Set upper limit

Read upper limit

Set lower limit

Read lower limit

Set Dffset angle

LVDT Reading to master
Angle to Move to
Current angle

Set upper limit

Read upper limit

Set lower limit

Read lower limit

Set Offset angle

LYDT Reading to master
Angle to Move to
Current angle

Set upper limit

Read upper limit

Set lower limit

Read lower limit

Set Offset angle

ST

P . - A i Pt

w4 T ——

AP i s

. e—

C sss Channel 10

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

address_list(900)
address_list(901)
address_list(902)
address_list(903)
address_list(904)
address_list(905)
address_list(906)
address_list(907)

C ss= Channel 11

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

address_list(910)
address_list(911)
address_list(912)
address_list(913)
address_list(914)
address_list(915)
address_list(916)
address_list(917)

C #¢» Channel 12

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

address_list(920)
address_list(921)
address_list(922)
address_list(923)
address_list(924)
address_list(925)
address_list(926)
address_list(927)

/

S e N N

'8BB8°’X /
'8BB9°’X /
*8BBA’X /
18BBB°X /
*8BBC’X /
’8BRD°X /
*8BBE’X /
*8BEP°X /

'8BCO’X /
188C1°X /
18BC2°X /
'8BC3’X /
18BC4°X /
18BC5°X /
18BC6°X /
’8BCT°X /

’8BC8°X /
’8BCY’X /
’8BCA’X /
*8BCB’X /
*8BCC’X /
I8BCD’X /
'8BCE’X /
*8BCF’X /

C ses Actuator Calibration Coefficients

om s e m s s wm m

 em s e sm s e am

R R L L T

LVDT Reading to master
ingle to Move to
Current angle

Set upper limit

Read upper limit

Set lower limit

Read lower limit

Set Offset angle

LYDT Reading to master
Angle to Move to
Current angle

Set upper limit

Read upper limit

Set lower limit

Read lower limit

Set Offset angle

LVDT Reading to master
Angle to Move to
Current angle

Set upper limit

Read upper limit

Set lower limit

Read lower limit

Set Offset angle

DATA address_list(930) / ’8BDB’X / ! Turn Manual Pulse Mode ON
DATA address_list(931) / °8BDD’X / ! Turn Manual Pulse Mode OFF
c
c END OF BUS_ADDRESSES
A

40

APPENDIX F

LIST OF BUS ADDRESSES IN VARIABLE PRESSURE
TRANSONIC WIND TUNNEL

4
c START OF BUS_ADDRESSES
c
C
c Definitions of Data Acquisition Parallel Bus addresses
c - to be included in DIGID.FOR
C
INTEGER*2 address_list (0:1599)
c
c Addresses that generate special events
c
DATA address_list(0) / 20000°X / t NOP
DATA address_list(1) / ’FFFF’X / ! MASTER RESET
DATA address_list(2) / *1°X / ! Trigger all Modules
4
c Addresses relating to the Tunnel Parameter Module
C

DATA address_1ist(500)
DATA address_list(501)
DATA address_list(502)
DATA address_list(503)
DATA address_list(504)
DATA address_list(505)
DATA address_list(506)
DATA address_list (507)
DATA address_list(508)
DATA address_list(509)
DATA address_list(510)
DATA address_list(511)
DATA address_list(512)
DATA address_list(513)
DATA address_list(514)
DATA address_list(515)
DATA address_list(516)

C »es Display control commands
DATA address_list(520)
DATA address_list(521)
DATA address_list(522)
DATA address_list(523)
DATA address_list(524)
DATA address_list(525)
DATA address_list(526)

C os» Send data commands
DATA address_list(530)
paATA address_list(531)
DATA address_list(532)
DATA address_list(533)
DATA address_list(534)

'8570°1 /
'85672°X /
’8574°1 /
18576°X /
*8578°X /
'857A°X /
*8571°X /
'18573°X /
18583’ /
'8685°X /
'8687'X /
'8689°X /
’868B°X /
'8595°X /
'858D°X /
18591° /
'18575°X /

R R e T T e T T T S N

18669°'X/
'8583°1/
18586°X/
*8587°x/
'8589°X/
'8588°1/
'858D°X/

R T T S N

/ '8591°%/
/ '8593°%/
/ '85898°%/
/ '0897°Y/
/ '8599°Xx/

41

- data value read

- data value read

- data value read

-~ data value read

- data value read

Re - data value read

¥ set write

M set write

Clear screen options write
Raster code optiona write
Large graphics optioas write
Small graphics options write
Lir temperature display write
Fault/service message write
Display Message (write)

Vrite into master message buffer
Load Ren ¥o ref lemn (write)

0 E <

Change display Node

Clear display

Change background rastar
Select large char display
Select nedium char display
Select display on lime 13
Select display on line 14 & 15

Send message for display
Send first label

Send first awmber

Send second label

Send second sumber

[—

Send third label
Send third number

Input Coeff ID for update
Write Coeff ID for update

Iaput Coeff ID for read
Vrite Coeff ID for read
Read Master Message Buffer

DATA address_list(535) / ’859B’X/ !
DATA address_list(536) / *859D°X/ '
DATA address_list(540) / °856C°X/ '
DATA address_list(541) / *856D°X/ H
DATA address_list(542) / ’856R’I/ !
DATA address_list(543) / 856P’X/ H
DATA address_list(544) / >8590°)X/ H

c - ———

c Addresses relating to the SG amplifier module

[

C »+s Data Value reads of all channels

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

C »»+ Reads for
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

address_list(100)
address_list(101)
address_list(102)
address_list(103)
address_list(104)
address_list(105)
address_list(106)
address_list(107)

channels in pairs
address_list(108)
address_list(109)
address_list(110)
address_list(111)
address_list(112)
address_list(113)
address_list(114)
address_list(115)
address_list(116)
address_list(117)
address_list(118)
address_list(119)
address_list(120)
address_list(121)
address_list(122)

/
/
/
/

/
/
/
/

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

C ses Calibration Relay Operations

DATA
DATA
DATA

address_list(123)
address_list(124)
address_list(125)

/
/
/

18169°X /
'81F4°X /
28170°1 /
'8172°Xx /
°8174°X /
18176°X /
’8178°X /
18174°X /

8171°X /
’81D0°X /
28170°X /
’81D02°'X /
’18172°X /
°8175°X /
181d4°X /
8174°X /
'81D6°X /
'8176°X /
’8177°)x /
'81D8°X /
’8178°X /
'81DA’X /
’8174°X /

’81F0°X /
'81F1°X /
'81F1°X /

42

v e e b s b e em

B T M s At AE s s e s s e m

- e

Triggexr conversion on all ADC’s
Read ADC conversion buffer

Read ADC channel 1
Read ADC channel 2
Read ADC channel 3
Read ADC channel 4
Read ADC channel 5
Read ADC channel 6

Trigger Channels 1
Read ADC channel 1
Read Channel 1
Read ADC channel 2
Read Channel 2
Trigger Channels 3
Read ADC channel 3
Read Channel 3
Read ADC channel 4
Read Channel 4
Trigger Channels §
Read ADC channel §
Read Channel §
Read ADC channel 6
Read Channel 6

&2
status

status

| XY
status

status

k6
status

status

buffer

buffer

buffer

buffer

buffer

buffer

Read calibration relay status
Turn Calibration Relay 'ON?
Turn Calibration Relay ’0FF’

[}

iddresses relating to the Scani-valve module

DATA address_list(300) / *8361°X /
DATA address_list(301) / '8364’X /
DATA address_list(302) / ’8365°X /
DATA address_list(303) / ’836C°X /
DATA address_list(304) / '8369°X /
DATA address_list(305) / ’836B’X /

Trigger data acquisition
Read status of buffer
Clear all buffers

Read selected scani-valve
Set power settings

Set operation mode code

P L

sss Calibration Relay Operations
DATA address_list(308) / *83F0°X / ! Read calibration relay status
DATA address_list(309) / *83F1°X / ! Toggle Calibration Relay ON/0OFF

sss Trigger ADC read on scani-valve
DATA address_list(311) / ’8371°X /
DATA address_list(312) / ’8373°X /
DATA address_list(313) / ’8375°X /
DATA address_list(314) / ’8377°X /
DATA address_list(315) / ’8379°X /
DATA address_1ist(316) / '837B’X /

Read Scani-valve
Read Scani-valve
Read Scani-valve
Read Scani-valve
Read Scani-valve
Read Scani-valve

Ao b WK

v s e tm e

ss+ Read ADZ caxds of all channels
DATA address_list(321) / '8370°X / ! Read Scani-valve
DATA address_list(322) / ’8372°1 / ! Read Scani-valve
DATA address_list(323) / *8374°X / ! Read Scani-valve
DATA address_list(324) / ’8376’I / ! Read Scani-valve
DATA address_list(325) / ’8378°X / ! Read Scani-valve
DATA address_list(326) / °837A°X / ! Read Scani-valve

DN b WN R

sss Set number of selected ports on scanivalve

DATA address_list(331) / 8391°'X / ! Scani-valve 1
DATA address_list(332) / °8393°X / ! Scani-valve 2
DATA address_list(333) / °8395°X / t Scani~valve 3
DATA address_list(334) / °8397°X / ! Scani-valve 4
DATA address_list(335) / °8399°X / ! Scani~valve 5
DATA address_list(336) / ’839B°X / t Scani~valve 6§

ss¢ Read numbexr of selected ports on scanivalve

DATA address_list(341) / ’8390°X / 1 Scani-valve 1
DATA address_list(342) / '8392°'x / ! Scani-valve 2
DATA address_list(343) / ’8394°X / ! Scani-valve 3
DATA address_list(344) / ’8396°X / ! Scani-valve 4
DPATA address_list(345) / ’8398°X / t Scani-valve b
DATA address_list(346) / 839X / ! Scani-valve 6

ses Set the currently selected port on scanivalve

DATA address_list(351) / ’83%D°X / ! Scani-valve 1
DATA address_list(352) / ’839F’X / t Scani-valve 2
DATA address_list(353) / ’8341°X / ! Scani-valve 3
DATA address_list(354) / ’8343°X / ! Scani-valve 4
DATA address_list(355) / ’8345°X / ¢ Scapi-valve §
DATA address_list(366) / ’83A7°X / ! Scani-valve 6

s¢s Read the currently selected port on scanivalve

DATA address_list(361) / ’839C’I / t Scani-valve 1
DATA address_list(362) / *839K°X / ! Scani-valve 2
DATA address_list(363) / '8340°X / t Scani-valve 3
DATA address_list(364) / ’83A2°X / ! Scani-valve 4
DATA addresa_list(365) / '8314°X / ! Scani-valve 5
DATA address_list(366) / ’8346°X / ! Scami-valve 6

43

""""'1Irl-"'.".....""""""..'....ll.lll'.llllllll|||lllllllllllIlllllllllllIlIIIIlIlllllll|||||||..........r47

! C s+ Set the settling time used on scanivalve (in ms)

sumuee =

DATA address_list(371) / ’8319°X / ! Scani-valve 1
: DATA address_list(372) / *83AB°X / ! Scami-valve 2
‘ DATA address_list(373) / ’83AD°X / ! Scani-valve 3
: DATA address_1ist(374) / ’83AF’X / ! Scani-valve 4
3 DATA address_list(375) / '83B1°X / ! Scani-valve &
: J DATA address_list(376) / ’83B3°I / ! Scani-valve 6
C es+ Read the settling time used on scanivalve
+ DATA address_list(381) / ’83A8°X / ! Scani-valve 1
t DATA address_list(382) / '83AA°X / ! Scami-valve 2
; DATA address_list(383) / *83AC’X / ! Scami-valve 3
; DATA address_list(384) / ’B3AR’X / ! Scani-valve 4
DATA address_list(385) / ’83B0’X / ! Scani-valve §
DATA address_list(386) / ’83B2’I / ! Scani-valve 6
' c
c END OF BUS_ADDRESSES
c

pesd

o U W LR

N

Yt

P4 | master computer

DRV11 Bus interface
Input/Output Cabies from DRV11

Bus

Temminator Bi-directional Differential Parallel Bus (BDF)
I (ir_
7
| |

Slave Modu's 1

Figure 1: Configuration of the Wind Tunnel Data Acquisition System.

BIT
15 7 8 S 0

N O O O O |
n;lauma asnus;u N"('—EDBB CSA1 {
FEAD oMLY o T e
(READ/WRITE) (READWRITE)

Figure 2: The word format of DRV11 Control Status Register.

45

T P A I R

DISTRIBUTION

AUSTRALIA

Department of Defence

Defence Central
Chief Defence Scientist
/18 Science Corporate Management shared copy
FAS Science Policy
Director Departmental Publications
Counsellor Defence Science, London (Doc Data sheet only)
Counsellor Defence Science, Washington (Doc Data sheet only)
Scientific Adviser Defence Central
OIC TRS Defence Central Library
Document Exchange Centre, DSTIC (8 copies)
Defence Intelligence Organisation
Librarian Defence Signals Directorate, (Doc Data sheet only)

nauti Labor
Director
Library
Chief Air Operations Division
Authors: B.D. Fairley
S.S.W. Lam
N. Matheson (3 copies)
M. Glaister
1.. MacLaren
Y. Link

P. Malone (3 copies)

Materials Research Laboratory
Director/Library
n i T] nisation - Sali
Library
Navy Office
Navy Scientific Adviser (3 copies Doc Data sheet only)
Naval Support Command

Superintendent, Naval Aircraft Logistics
Directorate of Aviation Projects - Navy

Amny Office
Scientific Adviser - Army (Doc Data sheet only)
Engineering Development Establishment Library
US Army Research, Development and Standardisation Group (3 copies)

. -) s

Air Force Office
Air Force Scientific Adviser (Doc Data sheet only)
Aircraft Research and Development Unit
Scientific Flight Group
Library
OIC ATF, ATS, RAAFSTT, WAGGA (2 copies)

HQ ADF
Director General Force Development (Air)

Department of Transport & Communication
Library

Statutory and State Authorities and Industry
Aero-Space Technologies Australia, Systems Division Librarian
ASTA Engineering, Document Control Office
Civil Aviation Authority
Hawker de Havilland Aust Pty Ltd, Victoria, Library
Hawker de Havilland Aust Pty Ltd, Bankstown, Library
Australian Nuclear Science and Technology Organisation
Gas & Fuel Corporation of Vic., Manager Scientific Services
SEC of Vic., Herman Research Laboratory, Library

niversities and College
Adelaide
Barr Smith Library

Flinders
Library

LaTrobe
Library

Melbourne
Engineering Library

Monash
Hargrave Library

Newcastle
Library
New England
Library
Sydney
Engineering Library

NSwW
Library, Australian Defence Force Academy

o Bty O e e W ¢ M 4C

Queensland
Library

Tasmania
Engineering Library

Western Australia
Library

RMIT
Library

University College of the Northern Territory
Library

INDIA
CAARC Coordinator Aerodynamics

UNITED KINGDOM
CAARC Coordinator Aerodynamics

UNITED STATES OF AMERICA
NASA Scientific and Technical Information Facility

SPARES (4 COPIES)

TOTAL (70 COPIES)

AL 149 DEPARTMENT OF DEFENCE PAGE CLASSIFICATION

UNCLASSIFIED

DOCUMENT CONTROL DATA PRIV ACY MARKNG

1a. AR NU.{BER 1b. ESTABLISHMENT NUMBER 2. DOCUMENT DATE 3. TASK NUMBER
AR-007-135 ARL-TR-14 MARCH 1993 DST 92/459

4. TITLE 5. SECURITY CLASSIFICATION 6. NO.PAGES

(PLACE APPROPRIATE CLASSIFICATION
A SOFTWARE INTERFACE FOR THE ARL | IVBOX(S) IE. SECRET 5). CONF.(© 48
WIND TUNNEL DATA ACQUISITION RESTRICTED (R), UNCLASSWIED U)).
SYSTEM

7.NO. REFS.
U U u |l
8

DOCUMENT TITLE ABSTRACT
8 AUTHOR(S) 9. DOWNGRADING/DELIMITING INSTRUCTIONS
B.D. FAIRLIE Not applicable.
S.S.W.LAM
10. CORPORATE AUTHOR AND ADDRESS 11. OFFICE/POSITION RESPONSIBLE FOR:
AERONAUTICAL RESEARCH LABORATORY DSTO

SPONSOR
AIR OPERATIONS DIVISION A
506 LORIMER STREET SECURITY
FISHERMENS BEND VIC 3207 .
DOWNGRADING
CAOD
APPROVAL

DEFENCE, ANZAC PARK WEST OFFICES, ACT 2601

12. SECONDARY DISTRIBUTION (UF THIS DOCUMENT)

Approved for public release.
OVERSEAS ENQUIRIES QUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DSTIC, ADMINISTRATIVE SERVICES BRANCH, DEPARTMENT OF

m

13s. THIS DOCUMENT MAY BE ANNOUNCED IN CATALOGUES AND AWARENESS SERVICES AVAILABLETO

No limitations.

13b. CITATION FOR OTHER PURPOSES (IE. CASUAL

ANNOUNCEMENT) MAY BE UNRESTRICTED OR AS FOR 13a.

X
14. DESCRIPTORS 15. DISCAT SURJECT
Transonic wind tunnels Software tool support interfaces | CATEGoRES
Low speed wind tunnels Computer programs 010101
Aeronautical Research Laboratory
Data acquisition
16 ABSTRACT

A software interface for the data acquisition system has been developed on a MicroVAX Il computer for the
Transonic and Low Speed wind tunnels at ARL. The software is responsible for handling instrumeniation
control and data transfer requests between the data acquisition software and the parallel data bus via a
DRV11 paraliel I/0 interface adapter. Access to the DRV1] registers is effected by direct mapping of the
Q22-Bus 1/0 page to program variables, giving fast and efficient transfer of data to and from the parallel
daia bus. Up 1o five processes may access the parallel data bus at one time via this software interface thus
allowing grea: flexibility in the development of data acquisition software. This report details the necessary
programming steps which must be included in data acquisition software to access the parallel data bus via
the software interface.

R o ——————

PAGE CLASSIFICATION
UNCLASSIFIED
PRIVACY MARKING

THIS PAGE IS TO BE USED TO RECORD INFORMATION WHICH 1S REQUIRED BY THE ESTABLISHMENT POR TS OWN USE BUT WHICH WILL NOT BE ADDED TO
THE DISTIS DATA UNLESS SPECIFICALLY REQUESTED.

16. ABSTRACT (CONT).

17. DMPRINT

AERONAUTICAL RESEARCH LABORATORY, MELBOURNE
18. DOCUMENT SERIES AND NUMBER 19. WA NUMBER 2. TYPE OF REPORT AND PERIOD COVERED
Technical Report 14 54 527F

21. COMPUTER PROGRAMS USED

22. ESTABLISHMENT PILE REF(S)

23. ADDITIONAL INPORMATION (AS REQUIRED)

